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Abstract

Detection of similar programs is a highly studied problem. Detecting similar code is
an important strategy for detecting badly modularized code, finding vulnerabilities
due to error prone copy-paste programming methodologies, and detecting academic
dishonesty in online code assignment submissions following the copy-paste-adapt-it
pattern. The latter is the impetus for this work.

A novel system is presented that is specifically adapted to programs that may
be small, and similar by virtue of being written to solve the same problem. The
system is also adapted toward specific expected behaviors of plagiarists, making
use of algorithms custom built to both recognize these behaviors while satisfying
hierarchical properties. A defining and novel property of the proposed method is
the categorical information it provides. A hierarchy of categories with an implica-
tion relationship are leveraged in the production of descriptive, rank-able results.
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Chapter 1

Introduction

1.1 Overview of The Field

Determining code similarity is not a new concept. Many systems have been pro-
posed and implemented with this aim in mind. Examples include DECKARD [10]
and MOSS [17].

Detecting code similarity can be optimized for different goals. Systems such as
DECKARD detect code clones with the general aim of finding similar portions of
code, whether this be to detect areas in need of refactoring or to detect areas that
are possible security risks. MOSS is a system designed with an aim in line with
our own: to detect clones in the context of finding plagiarism.

Different approaches have been taken to this problem. Some approaches focus
on differences at the textual level, others detect differences at the token level,
some detect differences at the abstract syntax tree level, and still others examine
differences in lists of properties of the program.

It is important to note that systems working with different representations of
the program have different information available to them. Many systems sacrifice
some information in order to get to a different representation.

1.2 Research Goals

Our research aims to detect similar programs to help in recognizing plagiarism.
The developed system must be optimized to work with programs that are expected
to be somewhat similar by virtue of being written to solve the same problem. It
must also be sensitive enough to work with programs that may be small in size. As
such, it is essential that any useful information a program provides is not discarded
prematurely, as by moving to a more general representation of the program.
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CHAPTER 1. INTRODUCTION 5

It is desired that this system be effective (accurate in determining program sim-
ilarity) and scalable. Effectiveness is valued more than scalability as this system’s
intended use is on datasets of limited size from Moodle.

There are a list of common types of plagiarism that we would like this system to
be able to detect. It is important that the system be designed with these expected
forms of plagiarism in mind. There are specific changes to a program that should
not disguise the program from being matched to a clone. These changes are as
follows.

Table 1.1:

Goals of The Clone Detector

Changes That Must Not Deter Detec-
tion

Annotations/Notes

order of functions the order of function definitions
order of statements the order of statements within the pro-

gram
order of parameters the order of parameters to a function
changing identifier names changing variable names
changing whitespace addition or deletion of non-meaningful

tabs, spaces, and newlines
changing layout indentation level or tabs vs spaces
changing comments deletion, insertion, or editing of com-

ments (including docstrings)
replacing statements with equivalent
statements

for example, a += 1 and a = a + 1

replacing expressions with equivalent
expressions

for example, a = 1 + 1 and a = 2

1.3 Research Methodology

A system will be designed such that the expected forms of plagiarism can be
detected and descriptively reported. This system will then be tested with real
student submissions to analyze its effectiveness.



Chapter 2

Background

Two similar pieces of code are referred to as code clones [9, 16]. The goal of the
proposed system will be to detect such code clones. A system for detecting code
clones is referred to as a clone detector.

It has been suggested that a typical clone detector follows six phases in its
operation [16]. These phases are pre-processing, transformation, match detection,
formatting, post-processing, and aggregation.

In the pre-processing phase, the parts of the code that are not of interest in
the comparison are removed. This is referred to as normalization, and some may
also occur after the code has already in some way been transformed. The code is
then separated into source units. These are the largest pieces of the source that
are deemed to be comparable for similarity with each other. The source units may
be further separated into comparison units of a differing size depending on the
intended granularity of the comparison.

In the transformation phase, the code of the comparison units is then changed
into the preferred representation for comparison. If the preferred representation is
text, then a transformation may not be necessary. This transformation may also
not be necessary if a transformation was already performed because the separation
of the code into comparison units required it.

In the match detection phase, transformed comparison units are then used as
input to the comparison algorithm to determine similarity.

In the formatting phase, the code clones are then mapped back to the original
code by location.

In the post-processing phase, the code clones are visualized and the operator
of the program is allowed to manually discern false positives. A false positive in
this context is something the clone detector detects as a code clone, but is not.

In the aggregation phase, groups of code clones are gathered into clone classes
or families.
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CHAPTER 2. BACKGROUND 7

2.1 Related Work

Previous work has described a wide range of approaches to similarity detection,
including the following: evolutionary programming based [3], string-based [10],
token-based [10], tree-based [10], semantics-based [10], instruction-based [1], bytecode-
based [11], and metric-based [4, 7, 16]. These methods can be loosely divided into
three categories: sequence-based, graph-based, and metric-based methods.

Sequence-based methods include: string-based, token-based, bytecode-based,
and instruction-based methods. All of these methods retain the advantage of
working with a sequence of values instead of more complex data structures. These
methods are more amenable to a plethora of techniques deriving from well un-
derstood principles of information theory. It should be noted that detecting code
similarity in intermediate code representations is less widely studied than working
with the source code itself [11].

Graph-based methods include: tree-based and semantics-based methods. These
methods sacrifice simplicity for a richer representation of the code. In methods
working with sequences, metrics such as the Kologmorov distance and concepts
such as fast dynamic time warping [1], normalized information distance [12], and tf-
idf (term frequency–inverse document frequency) can be immensely useful. When
working with trees, finding edit distances can be computationally demanding. In
fact, efficient tree similarity detection still remains an open problem [10]. This can
lead to a lack of scalability [2].

Metric-based methods find characteristics or metrics of code, then compare
these metrics instead of the code itself [16]. Metric-based methods do not fit
well into either of the general categories as these metrics could be attributes of a
sequence or a graph.

2.2 Types of Clones

There is a hierarchy of clone types found in the literature. These categories can
be seen to have a rough correspondence to our goals.

Roy [16] describes 4 types of clones. I will assign each a short name.
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Table 2.1: Categories from Roy [16] with short names assigned

# Name Description

1 Near Identical identical code fragments except for variations of whites-
pace, layout, and comments

2 Similar syntactically identical fragments except for variations in
identifiers, literals, types, whitespace, layout, and com-
ments

3 Less Similar copied fragments with further modifications as changed,
added or removed statements, in addition to variations
in identifiers, literals, types, whitespace, layout and
comments

4 Arguably Similar two or more code fragments that perform the same
computation but are implemented by different syntac-
tic variants

Rattan [15] describes the following types of clones by name. Many of these
types can be described as subcategories of the types listed by Roy [16]. As such,
they will now be numbered by which group they appear to belong to in the previous
table.
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Table 2.2: Categories from [15] mapped to categories from [16]

# Type Annotations/Notes

1 exact identical
2 renamed/parameterized program fragments which are structurally/syntac-

tically similar except for changes in identifiers, lit-
erals, types, layout, and comments

3 near miss clones program fragments that have been copied with fur-
ther modifications like statement insertions/dele-
tions in addition to changes in identifiers, literals,
types and layouts

4 semantic clones functionally similar without being textually simi-
lar

4 structural clones patterns of interelated classes emerging from de-
sign and analysis space at architecture level

4 model based clones overlaps in models (graphical languages?)
4 function clones clones which are limited to the granularity of a

function/method or procedure
file clones n/a

4 contextual clones clones that can only be found by augmenting code
fragments with related information referenced by
the fragment to give its context

Being as the clone categories of Rattan [15] can be characterized as subcat-
egories of the clone categories from Roy [16], we will refer to clone categories
according to Roy [16], but will use the short names I assigned them in Figure 3.

With these categories in mind, it can be seen that most of our goals are within
categories 1-3 (Near Identical, Similar, and Less Similar), with only a few goals
falling within category 4 (Arguably Similar).

2.3 Summary

Many of our goals seem to be most gracefully handled by graph-based clone detec-
tors at the abstract syntax tree level.

Whereas a sequence-based clone detector can ignore variable names (tokens are
categorized by Python), it is more difficult to be insensitive to change in order of
parameters, and order of functions.
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Some information is lost in the process of parsing which can be valuable in
detecting collaboration, such as comments. Thus it would seem logical that our
approach might be a hybrid method.



Chapter 3

Theory and Design of the
Proposed System

The program space this system targets differs in several significant ways from
the program space targeted by other systems. Firstly, the programs this system
is designed to deal with are often small. They may consist of only one or two
functions. Secondly, the programs this system will be used with are written to
solve the same task, and as such are expected to be more similar to each other
than programs taken from other problem spaces.

These two characteristics of this program space emphasize the need of the
system to retain information as much as possible. This is important because infor-
mation stripped from a program may be the only information that distinguishes
it from another program.

If the system were to rank pairs of programs perfectly, this information could be
more or less useful depending on how closely the programs match. If programs tend
to match very closely, then it is possible that only programs that have exactly the
same text or exactly the same AST are of interest. For this reason, this information
is useful to the user of the system.

3.1 Hierarchy

It was realized that there are certain equivalence classes of programs that form a
hierarchy that could be useful in providing information to the user of the system.
For example, if two programs have an exact textual match, then they will also
have an exact abstract syntax match. The use of this hierarchy, to the knowledge
of this author, unique to this system.

Let e represent a comparison of the text of two programs and let a represent
a comparison of the abstract syntax trees of two programs. We expect that either

11
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two comparisons will yield a boolean result. If one comparison/relationship is an
ancestor of another in the hierarchy of match categories, then that relationship
implies the other. If we let E be the set of all pairs of programs that satisfy e and
we let A be the set of all pairs of programs that satisfy a , then all elements of E
should be also in A.

e(pair(x, y)) : bool

a(pair(x, y)) : bool

ancestor(e, a) ⇔ (e(pair(x, y))→ a(pair(x, y)))

E = {pair(x, y) : e(pair(x, y))}
A = {pair(x, y) : a(pair(x, y))}

thus

ancestor(e, a) → E ⊆ A

Figure 3.1: Mathematical Explanation of Heirarchical Relation

The lattice structure of this hierarchy is convenient in that if two programs
satisfy an ancestor equivalence relation in the hierarchy, then the programs will
also satisfy all progeny equivalence relations. If comparisons between programs are
performed in order of most specific to least, then we can stop when a comparison
is satisfied because the satisfaction of all less specific categories is guaranteed. The
most expressive relationship obtainable is the most specific, and as such we should
report this category as the category in which the match is found.

The properties these categories have in relation to each other are intentional,
and not derived from a previous work.
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Exact Match

AST Match

AST Match Reordered at Depth K Unifying AST Match

AST Match Ignoring VariablesUnifying AST Match Reordered at Depth K

AST Match Reordered at Depth K Ignoring Variables

Rough Match

Figure 3.2: Hierarchy of Match Categories

3.1.1 Exact Match

The exact match is an exact match on the text of two programs. This is the most
similar any two programs can be, and as such this is the most specific category of
the hierarchy.

3.1.2 AST Match

The AST match is a match between the abstract syntax trees of two programs.
This category disregards the whitespace differences that are not syntactically
meaningful and comments of the two programs. Any two programs that are exact
matches will also be AST matches. Thus the implication implied between the two
relations in the hierarchy holds.



CHAPTER 3. THEORY AND DESIGN OF THE PROPOSED SYSTEM 14

def dist(p1 ,p2):

# distance between

# two x,y points

r1=(p1.x -p2.x)**2

r2=(p1.y- p2.y)**2

return sqrt(r1+r2)

def dist(p1 ,p2):

r1=(p1.x-p2.x)**2

r2=(p1.y-p2.y)**2

return sqrt(r1+r2)

Figure 3.3: two programs sharing the same AST

Let children(x) be the children of a node x of an abstract syntax tree. The
children of a node x are ordered and denoted x0, x1...xn. Let x.type be the type
of a node x in an abstract syntax tree, for example: “If ′′, “FunctionDef ′′, or
“Assign′′. x.id is the identifier, if any, of a node x of an abstract syntax tree. Iden-
tifiers are the names of variables and literals. The following pseudocode presents
the algorithm for finding if there is an abstract syntax tree match between two
abstract syntax trees. It takes two ASTs (abstract syntax trees) as arguments,
and returns a boolean value.

procedure ASTmatch(a, b)
if a.type 6= b.type or a.id 6= b.id or |children(a)| 6= |children(b)| then

return False
if ∀0≤i<|children(a)|ASTmatch(ai, bi) then

return True
else

return False
return True

Figure 3.4: AST Match pseudocode

3.1.3 Unifying AST Match

def fact(x):

if x==0:

return 1

else:

return x*fact(x)

def factorial(nmb):

if nmb == 0:

return 1

else:

return nmb*factorial(

nmb)

Figure 3.5: two programs matching under a Unifying AST Match
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The unifying AST match is a match between the abstract syntax trees of two
programs that finds a one-to-one mapping between the variable names of the two
programs. This category can then allow programs in which all variables have been
renamed in a naive fashion. The naming of this category is based on the unification
algorithm [13].

The algorithm for determining this mapping involves the recursive walking
of both ASTs and comparison of nodes while keeping track of previous variable
mappings. If two nodes do not match in type, do not have the same number of
children, or do not make use identifier names that map to eachother, then the
unifying AST match fails. Also if any of the children children of the two nodes fail
this test, then the node fails. Otherwise there is a unifying AST match between
the two nodes.

From this recursive definition, we have the following pseudocode. Let mapping
be a hash table/dictionary provided empty at the invocation of the function.

procedure UnifyingASTmatch(a, b,mapping)
if a.type 6= b.type or |children(a)| 6= |children(b)| then

return False
if a.id 6= b.id then

if a /∈ mapping then
mapping[a.id]← b.id

else
if mapping[a.id] 6= b.id then

return False
if ∀0≤i<|children(a)|UnifyingASTmatch(ai, bi,mapping) then

return True
else

return False
return True

Figure 3.6: Unifying AST Match pseudocode

Note that this Unifying AST Match is more restrictive than a typical unification
algorithm.

3.1.4 AST Match Ignoring Variables

An AST match where variables are ignored allows for any renaming of variables.
This category is more general than the unifying AST match. This category is
useful as it is invariant to the reordering of variable arguments to commutative
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operations and the reordering of function arguments. The two programs below
illustrate this, and would match under this category.

def mult(a,b):

return a*b

def mult(a,b):

return b*a

Figure 3.7: two programs where commutivity allowed reordering of variables

procedure ASTmatchIgnoringVariables(a, b)
if a.type 6= b.type or |children(a)| 6= |children(b)| then

return False
if ∀0≤i<|children(a)|ASTmatchIgnoringV ariables(ai, bi) then

return True
else

return False
return True

Figure 3.8: AST Match Ignoring Variables pseudocode

3.1.5 AST Match Reordered at Depth K

It is often the case that a student may reorder statements or functions in a copied
program [4]. An equivalence relation allowing for such reorderings at all depths in
the AST would lead to a computationally prohibitive algorithm [18].

By selecting a maximum depth at which these reorderings may be allowed, this
computational hurdle can be overcome. This category retains much of its power
to express a type of program match.

In the all pseudocode that follows, the funcion f is a function mapping indices
to another permutation of indices. It is one-to-one and onto.
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procedure ReordDepthK(a, b, k)
if a.type 6= b.type or a.id 6= b.id or |children(a)| 6= |children(b)| then

return False
if k = 0 and ∀0≤i<|children(a)|reordDepthK(ai, bi, k) then

return True
else

if ∃{f :f(x)→y}∀0≤i<|children(a)|reordDepthK(ai, bf(i), k − 1) then
return True

return False

Figure 3.9: AST Match Reordered at Depth K pseudocode

Even at depth one this is a very useful relationship, as then it might detect
reordered functions.

def square (x):

return x * x

def halve (x):

return x/2

def halve (x):

return x/2

def square (x):

return x * x

Figure 3.10: two programs that are reordered at depth 1

3.1.6 Unifying AST Match Reordered at Depth K

This category allows for both reordering the AST up to a certain depth and re-
naming of variables in a one-to-one fashion.
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procedure UnifReordDepthK(a, b, k,mapping)
if a.type 6= b.type or or |children(a)| 6= |children(b)| then

return (False,None)

if a.id ∈ mapping then
if mapping[a.id] 6= b.id then

return (False,None)

else
mapping[a.id] = b.id

if k = 0 and ∀0≤i<|children(a)|UnifReordDepthK(ai, bi, k,mapping) then
return (True,mapping)

else
newmap = copy(mapping)
if k > 0 then

for all f ∈ {f : f(x)→ y} do
for all i ∈ {i : 0 ≤ i < |children(a)|} do

(bool, newmap) = UnifReordDepthK(ai, bf(i), k −
1, newmap)

if bool == False then
Break

mapping = newmapping
return (True,mapping)

return (False,None)

Figure 3.11: Unifying AST Match Reordered at Depth K pseudocode

3.1.7 AST Match Reordered at Depth K Ignoring Vari-
ables

This category allows for both reordering the AST up to a certain depth and re-
naming of variables in general. Note the lack of the id check.
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procedure P(a, b, k)
if a.type 6= b.type or |children(a)| 6= |children(b)| then

return False
if k = 0 and ∀0≤i<|children(a)|P (ai, bi, k) then

return True
else

if k > 0 and ∃{f :f(x)→y}∀0≤i<|children(a)|P (ai, bf(i), k − 1) then
return True

return False

Figure 3.12: Unifying AST Match Reordered at Depth K Ignoring Variables pseu-
docode

3.2 Rough Match

The rough match is a novel technique for determining the similarity of two pro-
grams that can’t be compared and categorized by its parents in the hierarchy.
The rough match borrows from the technique utilized by DECKARD [10]. In
contrast to DECKARD, rough match keeps track of the subtrees associated with
each characteristic vector to do finer comparisons of similar subtrees.

3.2.1 Characteristic Vectors

Characteristic vectors capture structural information of trees without regard for
the ordering of the children of a tree. The figure below illustrates characteristic
vectors and their associated ASTs. Note that the characteristics to be measured
are chosen in the vector template in the upper left of the figure.
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Figure 3.13: A sample parse tree with generated characteristic vectors [10].

The characteristic vector of a node of the AST is a vector representing the
counts of nodes of each type represented in the template vector within the subtree
rooted at that node. The weight of a vector is the sum of its constituents.

3.2.2 Filtering Characteristic Vectors For Significance

Determining that two programs each contain a variable is not likely to be signifi-
cant. Time can be saved in the processes that follow by filtering out characteristic
vectors that do not represent significant subtrees of a program’s AST.

The significance of a characteristic vector is proportional to its weight. The
significance of a characteristic vector is also inversely proportional to the total size
of the program it came from. A subtree corresponding to one line of a program
might be important in a program of only three lines, but not important in the
context of a program comprised of 80 lines.

From this we might construct a test for the significance of a vector, vector.
Note that the weight of the vector corresponding to the root node of the AST of
a program is proportional to the size of a program. Let c be a real factor. rootvec
is the characteristic vector corresponding to the node at the root of the abstract
syntax tree from which the subtree corresponding to vector comes.

weight(vector) ≥ c ∗ weight(rootvector) (3.1)

There is more to be considered here. A vector corresponding to a subtree from
50 lines might be significant in both a 50 line program and a 2000 line program,
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whereas a vector corresponding to 1 line might be significant in a one line program
but not in a 40 line program. Because 50

2000
= 1

40
, no constant c could be chosen to

make the previous equation a consistent satisfaction criterion.
To allow for this desired non-linear behavior, non-linearity must be introduced

into the formula. One possible choice of heuristic is shown below.

weight(rootvector)

weight(vector)
≤ c ∗ logweight(rootvector) (3.2)

Figure 3.14: significance heuristic for characteristic vectors

Thus the weight of the root vector is allowed to be a factor larger than the
weight of the vector in question, where the factor is proportional to the log of the
weight of the root vector.

3.2.3 Matching of Characteristic Vectors

Similarly we would rather matches where the characteristic vectors differ wildly
not be reported as significant. A number of different metrics can be used to find a
distance between two numerical vectors. We will denote the chosen distance norm
between two vectors by δ. The formula used for determining whether two vectors,
a and b, are significantly similar is as follows.

δ(a, b) < c ∗ log average(weight(a), weight(b)) (3.3)

Figure 3.15: heuristic for determining if two vectors are similar

The justification for the non-linearity of the heuristic is similar to the justifica-
tion for the non-linearity of the heuristic for determining if a vector is important in
the context of its containing program. With small vectors it is important that the
vectors be more near identical, as we would like to prevent the matching of small
matches unless extremely similar. Large matches can afford to be slightly less simi-
lar to allow for the insertion of useless statements or slight program rearrangement
by a determined plagiarist.

Abstract syntax trees are trees, and the weight of a characteristic vector of a
tree is proportional to the number of nodes. The depth of the tree is proportional
to the log of the weight of the characteristic vector. From this it can be roughly
thought that this heuristic allows for differences (δ) proportional to the depth of
the trees being compared.
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3.2.4 Mapping of Characteristic Vectors to AST Subtrees

If care is taken in keeping all characteristic vectors associated with their respective
AST subtrees, then after two vectors are found to be both significant and similar,
their respective AST subtrees can be compared. There is useful structural informa-
tion in the AST subtrees that is lost in the associated vectors, as is demonstrated
by the vectors’ child subtree ordering invariance.

3.2.5 Categorization and Scoring

By comparing the two subtrees, it can then be seen if the subtrees satisfy any of the
equivalence properties seen higher up in the categorical hierarchy. The subtrees
can be compared to see if they are exact AST matches, unifying AST matches, if
they differ only in variable names, etc.

Matches can be penalized based on how loose of an equivalence relationship
they satisfy. The size of the subtrees is also an importance characteristic when
determining a score for these matches.

In general, we have the following formula for calculating a score of a match.

average(weight(a), weight(b))

average(weight(rootvecof(a)), weight(rootvecof(b)))
∗
∏
penalties (3.4)

Figure 3.16: equation for scoring of rough match

A penalty is incurred at each level of depth required in the category hierarchy,
and a further penalty is required for subtrees that do not fit any equivalence
relation. This further penalty is the inverse of the tree edit distance of the two
subtrees.

3.2.6 Tree Edit Distance

Tree edit distance is a metric for the distance between two trees. Abstract Syntax
trees are trees and thus amenable to this metric. There are three operations on
trees that are allowed in the algorithm to change one tree into another. Each op-
eration is assigned a cost, and the algorithm seeks to minimize cost using dynamic
programming.

The tree edit distance algorithm utilized by rough match is the Zhang Shasha
[19] tree edit distance algorithm. The code for this algorithm has been ported
from a Python2 package to Python3.
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3.3 Reporting of Clone Pairs

Results are reported with most specific categories before more general categories.
That is, clones within one category are reported after the clones of that category’s
ancestor categories. The order clone pairs are reported from each equivalence
category is of no consequence. Rough matches are reported in order of descending
score.

An essential characteristic of the clone reporting of this system is that the
categories of the pairs is also reported. The user is not artificially deprived of
useful information. Even in the rough match category, the type of match that the
AST subtrees achieved is reported along with the score.

Sample output follows.

BEGIN REPORT

EXACT MATCH

program1

program2

AST MATCH

program3

program4

AST MATCH

program4

program5

UNIFYING AST MATCH

program6

program7

SIMILAR FRAGMENTS

SCORE: 7.13

TYPE: EXACT FRAGMENT

program11

program12

SIMILAR FRAGMENTS

SCORE: 3.584

TYPE: APPROX FRAGMENT

program8

program9

END REPORT

Figure 3.17: sample clone reporting output
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3.4 Graphical Interface

The text-based form of reporting does not facilitate the easy verification of clone
pairs. To simplify the verification of clone pairs, it is desired that a clone pair
display both programs side by side, and that the list of clones be easily navigable.
A GUI (graphical user interface) was developed for this purpose.

Figure 3.18: A Session with the Graphical Interface

3.4.1 File Selection

A text field at the top allows a user to input the path to file of student submissions
from Moodle in CSV (comma separated values) format to be used. If the user is
unsure of the exact path to the file, the “browse” button opens a new window
allowing the user to find the file in a file manager.

Figure 3.19: The File Selection Interface
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After a file has been selected, the user must then click the “run” button for
the detector to begin processing the programs from the selected file.

3.4.2 Pair List

On the right of the display there is a list area that displays a list of all clone pairs
found. On the left of each line is that clone pair’s ranking. After that follows the
category of the match, and if the matching was found using rough match, then the
type of rough match and the score of the match is also displayed.

3.4.3 Side by Side Display

On the left of the display are two text areas that allow for the display of two
programs side by side. If the user clicks a clone pair from the pair list on the right,
then the two programs corresponding to the match are displayed in the two text
areas of the side by side display.

3.5 Interpretation of Reported Pairs

The pairs are reported in order of suspicion. It is intended that a user of the
system would look at the pair listing, and verify clones by hand going down the
list until the proportion of the pairs that are not clones becomes high enough that
further analysis is not productive or determining with certainty that two programs
are clones becomes unclear.

3.6 Maintaining Anonymity

It is important to remove the biases of the user from the process of verifying if
two programs are similar. To aid in this, the proposed system assigns a unique
identifier to each of the programs it compares. It is these unique identifiers that
are reported.

3.7 Evaluation

There are two components to consider in the evaluation of the efficacy of this
experiment.

precision
the ratio of the number of reported clones that are clones to the total number
of clones reported
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recall
the ratio of the number of reported clones to the number of clones that exist

Determining recall is not feasible because of the nature of the interpretation of the
reported clone pairs. To determine recall, at the very least the ground truth of
all clone pairs would need to be known. Knowing the ground truth of all clones
pairs would involve analysis by hand of every pair of programs. This would be a
manual quadratic process and not reasonable by hand.

Similarly, because it is the onus is on the user to determine at what point in
the pair listing to cease looking at matches, it is difficult to quantify precision.
Different choices of when to stop looking at reported pairs may result in different
precision. It would be expected, however, that if the clone detector is effective,
then the farther down the list the user decides to stop verifying results, the lower
the precision will be.
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Figure 3.20: demonstration of an expected plot

From this expectation a scheme for quantifying the effectiveness of the clone
detector can be derived. The precision of the matches can be plotted against the
number of pairs (starting from the most certain) that are considered by the user.
It is assumed that if the system is effective, such a plot should have non-positive
slope. It is sensible that the more effective the system is, the less pronounced the
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slope of such a plot should be. This is because in an ineffective system, precision
will fall more markedly with decreasing reported certainty.

Additionally, as not all programs are clones of one another, it is expected that
at some point moving down the list of reported clone pairs, the amount of programs
reported that are clones should fall markedly.
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Improving Performance

Performance has been a recurring issue in the implementation of this system.
Intolerable performance has been improved through several measures.

4.1 Heuristics

Heuristics as previously detailed (both the similarity and the importance heuris-
tics) have been used to filter data considered, eliminating some data from consid-
eration in expensive comparative operations.

4.2 Parallelization

The results of the comparison of two programs has no affect on the result of
comparison of another two programs. Taking this into account, it is logical that
the comparison of different pairs should be parallelized [5, 14].

Parallelization of program comparisons has been accomplished through the use
of concurrent.futures and the concurrent.futures.ProcessPoolExecutor.
Creating a new process for each pair of programs is not ideal [8]. Thus a pro-
cess is only created for each group of at most 100 pairs.

4.3 Minimizing Use of Memory

The number of pairs of programs to be considered scales quadratically with the
number of programs considered. This can be a prohibitive number of pairs and can
use a lot of memory. To prevent this undesirable behavior, the groups of programs
to be fed to the concurrent.futures.ProcessPoolExecutor are created in a
lazy (on-demand) fashion. These groups are taken from a lazy generator of all

28
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pairs created using itertools.combinations. The lazy grouping function is shown
below.

def group(numberPerGroup ,source):

result = []

for thing in source:

result += [thing]

if len(result) >= numberPerGroup:

yield result

result = []

if result != []:

yield result

Figure 4.1: lazy grouping function

A result is created for every pair of programs that either matches a higher
match category or passes the heuristic filters and achieves a rough match score of
more than zero. Many programs will fit this description. In general, the number
of pairs fitting this description will scale quadratically with the number of pro-
grams considered. The number of pairs that is not in the rough match category is
generally small, and does not tend to be a problem in practice.

Before modifications, the number of rough match pairs would often be so high
that the computer would run out of memory and the program would crash. To
correct for this, a naive method of limiting the number of rough match pairs was
implemented. If a rough match is found, and the number of rough matches is
currently 400 or higher, then the current rough match is only added if its score
exceeds the minimum rough match score in the list of rough matches. If it is
added, then the rough match with minimum score is removed from the list of
rough matches. A limit of 400 rough matches was chosen because a user of this
system is unlikely to manually verify more than 400 matches.
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Results

5.1 Performance

Table 5.1:
Experimental Setup

Processor Intel(R) Core(TM) i3-3217U
Processing Speed 1.80GHz
op-mode 64-bit
ram 3843
Operating System Fedora release 20 (Heisenbug)

The plots below show the running time of the system vs the number of programs
considered. The programs used in the first plot generally have a shallow AST and
are small.

30
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Figure 5.1: performance with small shallow programs

The polynomial nature of this graph is clear, but running times for large
amounts of programs remain manageable. The programs in the following plot
are generally larger with a deeper AST.
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Figure 5.2: performance with large deep programs

The polynomial nature of this graph is less clear. This is sensible, as the
increased depth and variance of the ASTs involved makes the performance of the
tree edit distance algorithm more variable.

5.2 Validity

Below is a plot showing the precision of the system when working with 100 student
submissions for the same question. A difficulty with this problem is that many of
the students were using the same pseudocode as a model for a large part of their
program. This lead to some confusion of the system.
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Figure 5.3: plot for a question with 100 student submissions

As can be seen from the plot, there are not many clones before the certainty
drops dramatically. This is expected as there were only 100 programs being ana-
lyzed. This run of the program took 9 minutes and 12 seconds.

Another plot follows showing the precision of the system when working with
444 student submissions for a question in which the programs are smaller with
shallower ASTs.
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Figure 5.4: plot for a question with 444 student submissions

A surprising amount of programs here were obviously based on each other
when compared to the previous example. This report included 24 exact matches,
7 matches sharing abstract syntax trees, 13 unifying matches, and one match that
was the same when variable names were ignored. This goes a long way in showing
the usefulness of these very restrictive categories. This run of the program took
18 minutes and 39 seconds.
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Conclusion

6.1 Strengths of this System

The categorical approach of this system supplies more information to the user.
This better enables a user to make decisions about whether a reported clone is in
fact a clone.

The categorical hierarchy of this system allows for greater granularity in clones
reported. Other systems immediately discard potentially useful information in
the very beginning during the pre-processing phase. Our system attempts to only
discard useful information when it has no way to utilize it.

6.2 Suggestions for Future Work

6.2.1 Improve Performance

While much has been done to improve the performance of the system for the pur-
poses of usability, there is still room for dramatic improvement. Barring any real
performance improvement, the addition of a loading bar and/or time estimation
would be considerate. This is especially important to prevent a user from thinking
the program has frozen.

Two possible avenues for improved performance without additional insight
would be to port the program to a faster language, or to increase parallelization
using distributed computing. Heuristics could also be tightened with the choice of
new constants.
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6.2.2 Production of New Categories

The categories of matches presented in the match category hierarchy are not ex-
haustive. Any categories with the same implicative relationship could be used.
Examples of category not utilized in this system include “programs that have the
same text excluding leading and trailing whitespace” and “programs that have the
same text when non-syntactically significant blank lines are excluded”. Finer gran-
ularity of results can be achieved with the addition of new categories of matches.

6.2.3 Improvement of Template Characteristic Vector and
Weighting

The characteristic vector template used in this project was chosen via intuition
with some common language constructs, all of which are equally weighted in future
calculations. With directed effort, the features that are measured by the character-
istic vector could be more thoughtfully chosen and weighted. With a large corpus
of ground truth provided, efforts in this direction would be drastically simplified.

6.2.4 Alternative Reporting Strategies

The system here, as presented, reports clone pairs in a list of decreasing certainty.
While this is a valid choice, it should be noted that the upper categories of the
category hierarchy form equivalence relations. This allows for the separation of
equivalence classes from the results [6], where each equivalence class contains a
number of programs that match under a given matching category.

Reporting of this kind can aid a teacher in finding students who work together
frequently, or alarmingly large groups of students with very similar solutions. Such
reporting would be most optimally handled with an altered graphical user interface
(as it might then be desirable to see more than two programs next to each other).

The logic needed for separating equivalence classes has been implemented as
this angle was explored. This approach was abandoned in favor of a normal pair
listing in the interest of data collection as it was unclear how to quantitatively
evaluate results in that form.

6.2.5 Automated Identification of Evidence of Plagiarism

Speaking to some professors provided insight on typical methods of proving pla-
giarism. If two suspicious programs are not exactly identical, and even in some
cases if they are and the programs are very generic, a professor will often search
for distinguishing features the two programs share that are unlikely to occur aside
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from in the case of plagiarism. Examples of such distinguishing features include
trailing whitespace on certain lines of a program, or similar comments.

In the case of similar trailing whitespace or identical comments, the process
of finding such evidence of plagiarism can be automated. This would be a nice
extension to the current system in that instead of just reporting suspected clones,
suspected clones and the evidence needed to pursue disciplinary action could be
provided in tandem.

6.2.6 Utilizing more Information in Rough Matching

Similarly such atypical distinguishing features could be taken into consideration
in the matching process. While not all such features would fit nicely into the pre-
sented match category hierarchy, they could conceivably be used to affect scoring
in a rough match.

6.2.7 User Experience Considerations

The system this report details has a user interface that was designed mainly with
the researcher in mind. As such it has facilities for data collection and testing,
but does not have features for recovering student names or IDs from matches or
marking matches as verified. Such extensions would be trivial to implement, but
meaningful for a user of the system.

Additionally, the categories of clones reported, while descriptive and precise,
are not ideal for non-technical users. A renaming of the categories within the
graphical user interface would make the system more accessible for non-technical
users. It is not always the case that the person operating a clone detection system
is a technical user, and ultimately if results are to be brought for disciplinary
action, it is unlikely that the authority consulted will be a technical user.

It would also be nice if the areas of code corresponding to a rough match were
highlighted for easy identification. The abstract sytax trees of Python programs
hold line number information. This information could be used to this end.

6.3 Final Remarks

A novel method for code clone detection and reporting has been presented that is
specifically tailored to the problem of detecting plagiarism in student submissions.
By design it offers more information to the user of the system than many alter-
natives. Also by design many of its component algorithms specifically recognize
common techniques of plagiarists.
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It was effective in tests with real student program submissions. It is also
extensible with multiple ways in which it might be improved. A graphical interface
was implemented and used in the collection of data for this report.
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