Method For Segmentation Of Articulated
Structures Using Depth Images for Public

Displays

November 11, 2013

Robin Watson

rjwl70@uclive.ac.nz

Department of Computer Science and Software Engineering
University of Canterbury, Christchurch, New Zealand

Supervisor: Dr. Richard Green
richard.green@canterbury.ac.nz






Abstract

A novel method is presented to analyse articulated structures in depth data and is used in
an attempt to implement gesture-motion control. The method first uses region growing
with a depth threshold to obtain an initial segmentation of the scene into different bodies.
Region growing is carried out again on these bodies to produce subregions. A head tracking
method and hand tracking method were implemented using the depth analysis. The head
tracking had an average of 22 pixel error. The hand tracking was unsuccessful.
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Infroduction

Interactive public displays have long been constrained to physical interaction with button
or touch screen interfaces. With recent advancements in depth imaging technology, motion
controlled interfaces are now possible. Devices such as the Microsoft Kinect camera allow
motion control without requiring expensive stages, sensors or markers to be placed on users
or the environment. Current depth image software libraries [9, 8] are able to track human
body pose very effectively in a reasonably constrained setting, where users are situated
close to and in full view of the camera. However a general public display setup will not
guarantee such constraints [2]. Such a display is likely to have crowds of people where
users may obscure one another and it may be unfeasible to place the camera close to the
interaction space. The public setting rules out complex gestures since the majority of users
will be first time users. Gestures such as broad hand motions will be well suited as complete
motion interaction schemes are achievable and resemble the very accessible and widespread
touch interfaces [2,/11]. Because of their shallower associated learning curve, interfaces
with simpler interaction are also well suited to brief interaction experiences such as what
would be found at a public display.

1.1 Research Contribution

The research presents a novel method to track body pose in simple, broad hand gestures
for a crowded scene where people may occlude one another. This paper describes a vision-
based system to track motion gestures by segmenting depth data for bodies and then track-
ing face and hand locations on those bodies. The method does not use a body model and
is designed to work in situations where the entire body is not visible to the camera. The
lack of a body model means the implementation requires no dataset training. The ges-
tures description obtained from the system by the system would be enough to implement a
reasonably complete version of multitouch interaction for the motion display.



2 1. INTRODUCTION

1.2 Report Outline

Th remainder of this paper is organised as follows: Section [2| describes the motivations
for this research and provides background on similar public interface applications and pose
tracking methods. Section [3|describes the design and implementation of the vision system
and the methods employed to track users’ hands and faces. The evaluation of the effec-
tiveness if the system is given in section ] and the results are discussed in section [5| The
potential abilities of gestures output from the system are also discussed.



Background and Related Work

2.1 Motivation

The public setting brings many constraints that make many computer vision approaches un-
suitable for motion interaction. To achieve body pose tracking, traditional vision methods
have relied on colour have placed constraints on user clothing, background environment
and lighting in order to use color information such as skin tone [3]. Public displays may
be situated outdoors and methods that rely on strictly controlled illumination will not be
applicable. Constraints on user clothing, such as long sleeves and no gloves, will detract
from the experience and reduce the overall accessibility of the application. Similarly, fitting
specialised tracking equipment or coloured markers to the user will also affect accessibil-
ity and may be difficult to manage. Ideally the display can be left unattended. Solutions
making use of depth data may overcome all such constraints on lighting and user clothing.
A depth image captures how far from the camera the object is at each pixel and from this
information it is possible to get a much more informed view of the captured scene (figure

2.1).

2.2 Related Work

Kelly et al. [[7, 6] have tracked pedestrians in an unconstrained environment with a disparity
depth camera. They used a region growing approach to combine regions in order to segment
the pedestrians in the frame. They also incorporated anthropometric constraints during
their region combining to constrain the results of their segmentation to realistic human
dimensions. They produced very robust tracking of pedestrians however the overall body
shape was not preserved which would limit pose recognition. Their system was also slow
being designed for surveillance applications rather than real time interaction.

Chu [2] carried out studies on gesture systems for public display interaction. He inves-
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Figure 2.1: A depth image. The image instensity corresponds to how close the pixels are
to the camera

tigated display interaction and proposed a complete set of interactions for large motion
controlled displays. These were partially inspired by multitouch direct manipulation ges-
tures [[11,112} 4] used in touch interfaces. He also assessed a semaphore flag style interface.

Much work on body pose tracking uses classifiers, decision forests and other machine learn-
ing approaches. Microsoft’s Human Pose Estimation for Kinect project very robustly and
efficiently tracks human body pose using decision forests[9, 8]. Other works use an articu-
lated ’parts” body model and statistical means to match the image to model pose[13].



Design and Implementation

3.1 Overview

The goal of the system is to distinguish the different people in the frame and track where
their face and hands are. The system uses data from a Microsoft Kinect although other
depth sensitive cameras can provide similar data. The system is organised as shown in

figure[3.1]

The first segmentation stage separates the image according to the bodies visible in the
image. The second stage analyses the depth data for each person to acquire their structure.
The next two stages make use of the structural information to determine the position of the
hands and face. The data the system operates on is assumed to contain only people. The
people in the data performing interactive gestures are all facing toward the camera. This
allows for a left-right division of the person directly in the image plane.

Initial Segmentation
Region Growing
.
Segmentation of Bodies
Region Growing
.
Head Position
Determination

. 2

Hand Position Determination

Figure 3.1: system overview
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3.2 Segmentation of Bodies

The goal of the first process of the system is to distinguish regions of the image to corre-
sponding to different people in the image. This process results in the image being separated
according to the bodies identified in it (figure[3.2). A region growing method operating on
the depth data was used to carry out the segmentation. A region growing process on an
image starts with a pixel and incrementally checks its neighbours to determine if it belongs
to the same region, according to some condition [[1]. The condition chosen here is if the
pixels are within a fixed depth threshold of each other. The threshold was chosen as ap-
proximately 9.5cm. . The borders of the two bodies must have at least 9.5cm between them
in their distance to the camera in order to be segmented correctly as different bodies (figure

53).

In order to correctly segment the image, the threshold must be tuned precisely. If it is set
too high, the segmentation will fail to distinguish between close bodies. If it is set too low,
bodies with sharp depth discontinuities such as a forearm held forward will be segmented
as separate bodies (figure [3.4). Additionally, segmentation may fail to distinguish two
bodies if they are positioned sufficiently close in depth and close side by side such that no
intermediate pixels create a boundary between them (figure [3.5)). The quality limitations of
the Kinect image data may also cause discontinuities in the smaller, finely detailed parts of

the bodies such as hands, and cause them to be segmented separately. These generally occur

Figure 3.2: A segmented crowd scene
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Figure 3.3: Left: the two bodies are at different depths. Right: The two are segmented as
different bodies, even though they overlap in the image

Figure 3.4: The person’s arm was held forward enough to exceed the connectivity threshold
resulting in failed segmentation

only at the tips and extremities of a body and don’t affect the overall structure significantly.

The depth data allows the region growing process to be initialised to filter out data from a
close range or a far range. This defines a volume of interest, oriented with respect to the
camera. This allows for isolation of a smaller operating area within the camera’s view.

After segmentation, the segments are then filtered for a minimum size in order to produce
only bodies of a similar size to people. The minimum size is given as a simple count
of pixels(mass) in these experiments. This filtering accounts for noise and removes stray
body parts that were occluded so could not connect to their whole body. The minimum size
could also be a function pixel mass and per-pixel depth. This would better match the size
of object in real world dimensions rather than in the camera’s view. However in the test
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Figure 3.5: The two people in front stood close enough at similar depths that they were
segmented as one body

data used, the range of depths of the bodies did not vary significantly enough to necessitate
depth-dependent size filtering.

3.3 Further Segmentation of Bodies Into Parts

The second stage segments bodies further, distinguishing different regions of the body’s
articulated structure (figure[3.6]).

p
B YRY,

Figure 3.6: The person has been segmented into body parts, revealing their underlying
structure.

This stage uses region growing again, this time operating on individual bodies identified
in the last step, finding subregions of the bodies (figure [3.6). These subregions(body
parts) are segmented with a much lower connectivity threshold than used in the full-body
segmentation. This lower connectivity threshold divides the body parts on a small scale,
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rather than the large scale of the initial body segmentation described in section The
threshold ranges from 0.2cm to 3.4cm and is an independent variable for the experiments
described in section ] An important property of the structure of the body parts is the
"bordering’ of parts. Body parts are considered to be bordering if they share perimeter
pixels that are within a compatible distance in both depth and the image plane. Compatible
depth is defined as if the parts have some overlap in their depth ranges. This means that
either part has a depth extreme between the other part’s extremes. Because adjacent parts
may have gaps between them (figure [3.6), parts considered bordering may exist with an
allowable number of pixels between them, here called the "bleed’ distance.

3.4 Determination of Head Position

In order to help define the extents of the hands’ control range, the head position is de-
termined for each body so that hand positions may be taken as relative to the head. The
approach taken assumes the largest body part identified will be the torso. The bottom of
the head will be positioned at the top of the torso. The y coordinate of the head is taken to
be the top boundary of the torso. The x coordinate is taken as the x coordinate of the centre
of mass of the torso. This approach requires that the head be effectively distinguished from
the body during segmentation. The presence of the jaw generally provides enough of a dis-
continuity between head and chest, especially if the user tilts their head up in order to look
at a display. The experiments described in section [assess the accuracy of this approach.

Figure 3.7: The largest body part is shown in yellow and is deemed the torso. The head is
marked in blue at the top of the torso
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3.5 Determination of Hand Position

A function is evaluated per body part to determine if it is a hand or part of a hand. The
approach considers hand body parts to be extremities in the body structure and expects that
their bordering parts will all be off to one side. This means that there will be a large angle
between two angularly adjacent bordering part§3.9] This is termed here the ’clearance
angle’. An extremity is assumed to have a clearance angle of over 330°. The hand will
only be an extremity when the user moves it sufficiently far from their body. For example,
if the user had their hand in their pocket the system would regard it as being connected to
their body. This grey area is further discussed in section 4.2]

Figure 3.8: The body parts that are identified as hands by the algorithm. Many false posi-
tives are present

Figure 3.9: The clearance angle of the grey body part, as defined by its neighbouring body
parts



Evaluation and Results

Evaluation of both the head and hand position determination was carried out using a groundtruth
labelled video feed. The system evaluation was carried out on a frame by frame basis to
test the methods’ instantaneous accuracy, rather than with the aid of temporal information

to enhance stability.
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Figure 4.1: Head estimation error for range of connectivity thresholds
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4.1 Evaluation of Head Position Determination

For the head position evaluation, the groundtruth marked the position of the bottom of the
head of each person in frame. The error in head position as determined by the system
is measured as its deviation from the marked groundtruth head position for a given body.
The units of measured error are screen pixels, that is, the distance in the screen plane. The
average error summed over all the video frames was measured under a range of connectivity
thresholds for the body part segmentation stage (see section [3.3))

X and Y axis contribution to error
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4.2 Evaluation of Hand Position Determination

The groundtruth for the hand position evaluation had approximately all pixels marked if
they contained the hands of the users in view. This was done for each frame of the video.
To account for the grey area where a hand transitions from a body connected position to
an extremity, only hand positions above the head line were considered. This is because in
general a person raising their hand will have moved it far enough from their body by the
time they raise it above their head. Hands that were raised up to the head but were not
raised out were not marked as hands in the groundtruth. The groundtruth also recorded per
frame how many hands were raised for each person in frame.
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Positive and Negative Y axis contribution to error
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The evaluation considered, for every frame, the body parts above the head identified as
hands. If any of these body parts had pixels that overlapped with the groundtruth marked
hands, it counted as a positive identification for that hand. Since many, small hand segments
may overlap the marked hand, the maximum score per person was the number of hands
marked for them in the frame. The total number of hands positively identified divided by
the total available in the video was the score for that experiment. The experiment was run
for combinations of body part connectivity threshold and bleed distance.
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Bleed (px) |0 1 2 3 4 5 6 7 8 9
Threshold(mm)
210 011 0.13 0.17 020 0.21 022 025 025 0.26
410 011 0.19 0.18 021 0.19 025 0.26 0.22 0.22
6|0 017 020 023 023 021 028 025 027 0.25
810 018 021 025 026 022 024 025 028 0.24
100 0.19 021 024 023 023 022 025 025 024
120 025 026 026 028 026 027 026 026 0.21
1410 025 028 025 027 028 027 0.28 023 0.23
16 0 021 024 023 023 026 024 024 021 0.22
180 021 020 024 022 023 0.19 021 020 0.19

Table 4.1: Sensitivity of hand identification



Discussion

5.1 Head Position Determination

The head position determination achieves reasonably steady tracking of the head position
per frame. As can be seen in figure 4.1} The variation in error as a result of sensitivity to
threshold is approximately 12% (2.71 error for values of 23). The figure shows that there
is a threshold value around 15mm that produces a minimum in error of around 22 pixels.
The error increases sharply as threshold increases beyond this value. Figure shows
the x and y axis component contributions to the error. The x-axis contribution steadily
declines as the threshold is raised and the body is segmented into larger parts. This appears
to be because the x position output by the system converges to the centre of the body as the
whole body converges to one segment, as will happen with a high connectivity threshold.
The y coordinate error increases as the body converges to one part. Figure [.1I] shows
the y-axis contribution to the error from positive values and negative values (which are
when the system output lies below and above the actual location, respectively). The error
contribution from estimations below (positive y) the actual location decrease as threshold
rises and the errors from above (negative) increase. This is again consistent with the body
converging to one segment; the head position will be estimated as high, since the whole
body will be given as the torso and the head will be placed at the top.

5.2 Hand Position Determination

From the hand position determination results it is clear the method is not effective. Un-
der all variable configurations, not one trial identified more than 30% of the hands pre-
sented. It is not a simple case of inverting a 20% success rate into an 80% rate, as the
true-negative/false-negative rate would also invert. The system’s hand tracking is not a
success.



16

5. DISCUSSION

5.3 Gestures

Chu [2]] proposed that the set of gestures used for the iPhone would be effective and com-
plete for motion controlled public displays (table [5.3). To work in motion controlled
displays these gestures essentially require two hands, a 2 dimensional range of motion in
which they are suitably tracked and an action or pair of actions that correspond to touch-
press and release. A user moving their hands toward and away from the display can fa-
cilitate the press and release actions. Once a more effective method for hand tracking is
implemented, this set of gestures will be available to any users present in front of the depth

camera that are visible enough for the system to effectively handle.

Gesture Action

Tap To press or select a control or link (analogous to a single
mouse click event).

Double Tap To zoom in and centre a block of content or an image.
To zoom out (if already zoomed in)

Flick To scroll or pan quickly

Pinch open To zoom in

Pinch close To zoom out

Drag To move the viewport or pan. (Analogous to a mouse drag
event)

Slide To unlock and confirm turning it off. The technique is also

Two finger tap
Touch and hold

Two-finger scroll

Two-finger rotate

used for deleting files in certain screens such as videos, im-
ages and e-mails.

Zoom out of a map quickly

To display an information bubble, magnify content under
the finger.

To scroll up or down within a text area, an inline frame.
(Analogous to a mouse wheel event).

To rotate pictures clockwise and anti-clockwise in the photo
album.

Table 5.1: iPod Touch/ iPhone gestures and their actions [2]]



Conclusion and Future Work

This paper presented a novel method to analyse the articulated structure of bodies in a
scene. The method provided an effective means to track users’ head positions but failed
to achieve accurate hand tracking. Once an effective means of hand tracking however is
determined, the system will be capable of a rich motion experience for large numbers of
users simultaneously.

6.1 Limitations

6.1.1 Segmentation

The segmentation phase has the limitation that people standing in very close proximity to
each other will be segmented as a single body. This can be overcome using anthropometric
constraints during region growing as was done by Kelly et al[/]]. However their bottom-up
joining of regions did not preserve the outline of the user well. A top down, division of
the adjoined bodies may be possible and the points at which to divide the bodies may be
obtained through convexity defect analysis [[10]

6.1.2 Head Position

There were still cases when the head became joined to the torso and head tracking was af-
fected. Temporal stabilisation using a rolling average of head positions will help overcome
this.
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6.2 Future Work

An alternative method to allow hand control would be to place virtual targets around the
user’s tracked head. They could then move their hand into a target to use it. This is similar
to a means of control implemented by Joshua Scott [5]. This method doesn’t require precise
identification of the user’s hands, only that the user is given space to both fill and leave the
target empty. Another alternative is to count the pixel mass above the user’s head. Taking
pixel mass counts from both the left and right side would reflect general hand position
although would not be a direct pinpoint on the hands’ actual locations. The user would not
notice this if the visual representation of the tracking is not overlain on the user’s image.

Further work on the body part segmentation method could investigate properties of graphs
constructed from the *bordering’ relationship of the body parts. These graphs would have
bordering body parts represented as adjacent nodes.
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