

University of Canterbury

A robust wire
detector for a vine
pruning robot
COSC460 : Honours Report

Josh McCulloch
10/6/2013

1

Abstract
An automated vine pruning robot is being developed to reduce the cost of labour in vineyards. This

automated system requires an accurate model of the vine’s structure, including the locations of

support wires, in order for the robot to make good decisions about where and how to prune the

plant. In this project we have developed a system for accurately and robustly detecting pixels

belonging to wires in Bayer Images taken by the robot of the vine’s canopy. Our system uses support

vector machines for classifying wire and non-wire pixels, and a set of masks for optimally distributing

training examples over an image. We have found an optimal subset of features for describing these

examples and are able to achieve upwards of 90% precision with more than 20% recall. The system

generates data ideal for wire fitting and use by the automated vine pruning robot. The techniques

discussed could be generalised and used in other scenarios where selecting ideal example data from

a large pool of potential examples, and finding optimal features to represent these examples is

required.

2

Contents
Abstract ... 0

Introduction .. 4

Background and Related Work ... 5

Motivation... 5

Vine Pruning Robot ... 5

Related Research .. 5

Detecting High Tension Wires ... 5

Detecting Wires in the Vineyard ... 6

Road Lane Detection ... 6

Classification ... 7

Support Vector Machines ... 7

Neural Networks ... 7

Heuristic .. 8

Input Data ... 8

Bayer Images ... 8

Colour Images ... 9

Background Subtracted Images .. 9

Red Green Blue Colour Space ... 10

Hue Saturation Value Colour Space .. 10

Fitting Wires .. 11

Linear Regression with Least Squares ... 11

RANSAC ... 11

Hough Transform .. 11

System Design ... 13

System Input ... 13

Bayer Images ... 13

Marked Images ... 13

Support Vector Machines ... 14

Creating Vectors .. 14

Vectors .. 14

Features .. 15

3

Trees .. 15

Masks .. 16

Feature Library .. 16

Vectorisers .. 16

Finding Examples .. 16

Measuring Performance ... 17

Marked Images ... 17

Entire Image Classification .. 18

10-Fold Cross Validation ... 18

Performance Measures ... 18

Finding the ideal feature set ... 19

Add one in method ... 20

Leave one out .. 20

Finding the optimal SVM Hyper-parameters .. 20

Results ... 22

Discussion.. 28

Hyper-Parameters ... 28

Feature Selection .. 28

Training Examples ... 28

Overall Performance ... 29

Classification Time .. 29

Recall ... 29

Precision .. 29

Improving Classification Time ... 30

Conclusion ... 31

Future work ... 31

Bibliography .. 32

Appendices .. 34

Example of Training Images .. 34

Video Demonstration .. 35

4

Introduction
Vineyards require a significant amount of human labour to operate and pruning can consume 30-

50% of the annual labour cost (1). In an attempt to reduce the burden of finding and training a

workforce for this seasonal task, a team at the University of Canterbury is developing an automated

vine pruning robot. The robot straddles the row of grapevines and will prune the plants using a

computer controlled robotic arm. In order for the robot arm to be able to navigate the canopy of the

grapevine and make good decisions on where to prune the vine, a comprehensive model containing

the structure of the canopy needs to be created. This model needs to include the plant structure,

post locations, and the wire positions. In this project we are specifically interested in accurately

locating the wires in 2-Dimensional images of the canopy. Wire locations are found by first finding

the pixels that represent wires in images captured by the robot. These wire pixels can then be used

by the wire fitting system to find the wire locations. These wire locations are added to the canopy

model for use by the rest of the automated vine pruning system.

The current automated vine pruning system contains a subsystem for locating the wire locations, but

it uses a heuristic approach and can fail under some conditions. A system is required which can

robustly find pixels which represent wires under varying and more difficult conditions. The wire

detection system discussed focuses on finding the individual wire pixels for use by the existing wire

fitting system.

5

Background and Related Work

Motivation
The goal of this project is to develop an effective robust system for extracting the wire locations in

the canopy of the vineyard using images captured by a vine pruning robot. The wire locations need

to be determined so an accurate model of the vine’s canopy can be constructed. The model is used

by the robot in order to determine where on the plant pruning should occur and how to navigate the

canopy to perform the cuts. Finding the accurate locations of the wires is crucial to ensure that the

robot does not mistakenly cut one of the wires or become entangled in them. The wires in the

vineyard support the weight of the vines and can be under high tension; cutting them could damage

the plants or the robot arm making the cuts. The arm becoming entangled in the wires will almost

certainly cause damage to the robot, resulting in a significant loss. The robot is being designed to

automatically prune vines which use the Vertical Shoot Positioning (VSP) training system containing

between five and seven wires (2); all of which need to be accurately located.

Vine Pruning Robot
The vine pruning robot is under heavy development by the University of Canterbury and several

industry partners. It is being developed to automate the pruning process in vineyards which is

currently entirely performed by manual labour. Vineyard pruning is seasonal work which requires a

significant level of skill, and a sizable workforce needs to be obtained and trained each year to

perform the task. Managers of vineyards are regularly forced to compromise on the skill of the

acquired labourers in order to obtain enough staff to perform pruning during the optimal time

window; this can lead to a sub-par level of pruning resulting in reduced crop yield and quality. This

goal of the Vine Pruning Robot is to create and autonomous system capable of pruning to a level

comparable to that of an expert veteran pruner, and could prune a significantly larger number of

vines per day than its human counterpart.

Related Research

Detecting High Tension Wires

Methods for detecting high tension suspended power-lines have been implemented in collision

avoidance systems on board aircraft. The Passive Obstacle Detection System (PODS) (3) for Wire

Detection developed by Boeing is able to detect suspended wires at ranges greater than 4.5

kilometres using both visible and long wave infrared light. PODS uses a multistage pipeline to first

remove noise from the image before slowly building up a model of wires in the image from primitive

components. PODS first applies a ring median filter to remove any large scale structures from the

image. The median filter has a radius of 5 pixels; wires are assumed to have a diameter of less than

this. The wires generally have a lower contrast than other elements in the image and so a SUSAN

filter is applied to create an image containing just the high contrast elements. This high contrast

image can then be subtracted leaving only the lower contrast elements. The system then calculates

the gradient phase operator using 2 convolution kernels; one for the horizontal direction and the

other for the vertical. This results in an image containing small scale gradient changes across the

image. The gradient along the top edge of the wire should be opposed to that of the lower edge (see

Figure 1). By looking for pixels with neighbours with diametrically opposed gradient phases,

potential wire segments can be found. 16 successive linear filters are then applied to the image to

find the probability that a wire segment belongs to a wire based on its neighbouring pixels. Varying

6

thresholds are applied with each filter leaving only pixels with a strong likelihood of being part of a

wire and rejecting segments which are disconnected.

Figure 1: Gradient phases of the upper and lower edges of a wire

The images captured by the vine pruning robot include the plant’s tendrils. When viewed in isolation

these tendrils have many similarities to the wires in the image. PODS does not need to deal with

such a similar objects to those that it is attempting to be classify in its images. Our system needs to

be able to robustly classify the wires, while rejecting the wire-like tendrils.

Detecting Wires in the Vineyard

The previous system implemented on the vine pruning robot uses a heuristic based approach for

detecting wires. This system, along with many other computer vision based systems on the robot,

works with background subtracted images. These background subtracted images work by calculating

the probability that a given pixel is part of the foreground using Bayes formula. The system looks at

each pixel individually and compares it to an image of the background. By looking for differences

between these images the probability that a given pixel is part of the foreground can be calculated.

The current wire detection system assumes that wires will be between one and six pixels in thickness

and approximately horizontal. It works by looking at the pixels above and below the pixel of interest,

if they are part of the background while the pixel of interest is part of the foreground, then it is likely

that the pixel is part of a wire. Long thin canes can meet this criterion, so the system also looks at

the colour of the pixel; wires are generally grey while vines are browner. The system then sweeps

across the image looking for pixels that are co-linear and forms wire segments from them. The

system then connects these wire segments to identify the wires. The final sweep and co-linear

search removes almost all false positives and the main concern with the system is its lack of

sensitivity under some conditions. Sometimes the wires are not well represented in the background

subtracted images or even non-existent.

Road Lane Detection

Detecting lane markings on roads bears some similarity to wire detection. Lipski et al. have

developed a fast and robust method for detecting lane markings using multiple cameras and parallel

processing on Graphical Processing Units (GPU) (4). Their method takes four images of different view

perspectives and creates a large mosaic image for processing. The lane model is reconstructed from

a set of lane segments provided by the feature detection system. Feature detection is processed in

parallel on the GPU to reduce classification time. The feature detection algorithm works with eight

by eight pixel sub regions from the large mosaic image. Each of these sub-regions undergoes a series

7

of tests in order to determine the likelihood that the given sub-region contains a lane segment.

These tests include checking the distribution of colours and the shape of the pixels inside the

segment. The lane segments created by this process can then be fitted into the lane model.

The assumptions made by the lane detection system are somewhat analogous to those we can make

when detecting wires. Lane detection needs to allow for obstructions hiding lanes from the cameras;

our system will also need to allow for objects obscuring the wires from view. The lane detection

system needs to allow for varying lighting conditions. The vine pruning robot provides its own light

source so this is not an issue. However we do need to allow for varying colours of wire and plant

structure, which if unaccounted for could be detrimental to the robustness of the system.

Classification

Support Vector Machines

Support Vector Machines (SVMs) have been used by the vine pruning robot for recovering laser lines

projected into the vines’ canopy. This structured light is used by the system for creating a 3-

dimensional model of the canopy structure. Botterill et al. achieved a 99% precision with 90% recall

when detecting the structured light in the canopy (5). Achieving similar results would greatly benefit

the wire detection system. However detecting a laser is generally simpler for a classifier than

detecting wires due to the high contrast and difference in hue between the laser and the rest of the

canopy. SVMs generally achieve similar results to other machine learning techniques such as Neural

Networks and Random Forests (6) (7). SVMs work by attempting to find a splitting plane which

divides the positive and negative examples (8). This plane can be linear or have a more complex

shape to better match the examples. The training vectors can be plotted in n-dimensional space

where n is the number of features that a vector has. A hyper-plane can then be found which splits

the examples with the maximum separation. In instances where an ideal splitting plane cannot be

found the vectors can be mapped into a higher dimensional space with the use of a kernel function;

these higher dimensional spaces allow for more complex splitting planes to be found. The Gaussian

Radial Basis Function (RBF) kernel can approximate a large number of smooth splitting surfaces

allowing it to perform well in most cases. The complexity of the splitting plane found by the RBF

kernel can be adjusted, a complex splitting plane runs the risk of over fitting, while less complex

splitting plane may over simplify and not correctly describe the data.

Figure 2: Example of 3 splitting planes. Both H2 and H3 successfully split the data set while H1 does not. [wikipedia.org]

Neural Networks

In earlier research, we used Neural Networks (NN) (9) for identifying wire locations in images of the

grapevines (10). We used four NNs; one for each colour channel of the Bayer Image. The NNs were

8

trained on randomly selected positive and negative examples from one image of the vine. The

output from the NNs was then passed through a threshold function which looked at neighbouring

pixels. If there were more neighbouring wire pixels than the pre-set threshold, the pixel was

classified as a wire. This threshold function greatly improved the precision by removing a large

number of false positive. This system ultimately achieved a precision of 94% which would generally

be good enough to accurately fit wire segments to. Half of the remaining false positives were caused

by a laser line that was projected into the scene and could potentially be removed with further

training of the networks. The major issue with NNs is the long time required for them to classify an

image; taking 27 seconds for a 960 by 1280 pixel image. This could be reduced by intelligently testing

pixels, for example based on whether neighbouring pixels had already been classified as wires.

However NNs still require a large amount of computation to classify an entire image.

Heuristic

Applying heuristics to classification problems is generally computationally efficient and fast (11).

There are many heuristics that could be used to identify potential wire segments (12), such as

testing the colour, as wires tend to be a shade of grey, or shape, as wires are thin structures and

usually close to horizontal. The existing system uses a scale invariant, shape based heuristic which is

looking for thin horizontal structures against the background. The wires are generally between one

and five pixels in diameter and can be extracted with a relatively high level of accuracy. False

positives can be further removed by examining the colour of classified pixels, as wires are generally

greyer than other structures in the image. While the heuristic based approach is computationally

light compared to using machine learning techniques, it does have some pitfalls. The heuristics need

to be programed into the system; if the environment is prone to change this can require that the

system be regularly reprogrammed. A classifier based on machine learning techniques could be

retrained using some current example images rather than requiring reprogramming. Heuristics can

also be used alongside a dynamic system utilising machine learning techniques. Heuristics could be

used to pre-process an image and identify candidate pixels that would then be checked by the

classifier. This method of boosting could improve the computational efficiency of the system and

remove objects that are easily extracted such as the blue backdrop; removing the requirement that

the machine learning classifier discovers this relationship.

Input Data

Bayer Images

Raw image data captured by the vine pruning robot is in the form of a Bayer Image. In most cameras

today each pixel is only capable of capturing one colour; be it red, green, or blue. The colours of the

pixels are generally laid out in the Bayer Pattern, developed by Bruce Bayer (13). In the Bayer

Pattern every odd numbered row will alternate between green and blue pixels, while every even row

alternates between red and green pixels. This pattern contains as many green pixels as blue and red

pixels combined; this is to mimic the physiology of the human eye. In this raw data captured from

the camera, each pixel contains a single value; the colour this value represents depends on the

pixel’s absolute position in the image (see Figure 3 and Figure 4).

Figure 3: Example of a Bayer Image. (Colours are used
to show the colour represented by each pixel)

[wikipedia.org]

Figure 4: Example of a Bayer Image used by the system.
A wire can be seen across the top of the image

Colour Images

The colour images used on the vine pruning robot are generated from the raw image data (see Bayer

Images). The process of reconstructing the colour image from the raw image data is called

demosaicing (14). The demosaicing process finds the values for the two colours of a given pixel that

it doesn’t contain, for example the red and blue values for a green pixel. These values can be found

by bilinearly interpolating the colours of neighbouring pixels. For example, for a pixel that only

contains a green value, its red value can be found by considering the two red pixels either above and

below or to the left and right of the green pixel; the blue value would then be found using this same

method. The process of reconstructing a full colour image by demosaicing a Bayer Image results in a

lower effective resolution (see Figure 5) than what would be achieved by using three separate image

sensors; one for each colour.

Figure 5: Difference in effective resolution caused by demosaicing [wikipedia.org]

Background Subtracted Images

The background subtracted images contain the probabilities that a given pixel belongs in the

foreground. Hence they in theory have had the background subtracted from them. These

background subtracted images are generated by the existing system used on the vine pruning robot

(15) (16). These images (see Figure 6) are used by various subsystems on the robot such as the cane

reconstruction, and wire extraction systems. These images are made by comparing the current

frame with an original frame which did not contain the canopy (vines, posts, wires, etc.). The

probability that a given pixel is part of the foreground can then be calculated by comparing its value

in the current frame with that in the original frame. The background subtracted image does not

contain any colour information; each pixel contains a single value representing the probability that is

in the foreground of the image.

10

Figure 6: Background Subtracted Probability Image

Red Green Blue Colour Space

The Red Green Blue (RGB) colour space represents colours using the three colourants red, green,

and blue. Three values are used to represent a colour in the RGB colour space; one value for each

colour intensity. The RGB colour space is a convenient representation for colour information; this is

due to the design of image source. The camera’s sensor uses three different sets of sensors, as

discussed in the Bayer Images section and is sensitive to one of the three colours Red, Green, and

Blue. This mapping from sensor data to RGB colour space does require the lossy demosaicing

process discussed in the Colour Images section. In Figure 7 we can see an example of the 3 individual

colour channels of an image used by the vine pruning robot. The wires generally have a grey colour

which results in them having somewhat equal intensity values in each of the three colour channels.

Figure 7: Examples of the Red, Green, and Blue colour channels

Hue Saturation Value Colour Space

Hue Saturation Value (HSV) is a cylindrical coordinate representation of the points in the RGB colour

model. The Hue value is used to select a colour by referencing a position around a colour wheel. The

saturation value represents how saturated the selected hue is. The “Value” value is used to

represent the brightness of the selected colour; where a small value would result in black and a large

value would be the original colour. The HSV colour space is of particular interest because it separates

the colour and intensity values; this was not the case in the RGB colour space. In Figure 8 we can see

each of the three HSV values along with the original full colour image. We can see the Hue image

allows us to easily isolate the plant structure from the background, but does not contain a strong

11

representation of the wires; however in the Saturation image the wires are much more prominent.

By combining the information in each of these channels we could envisage a system which could

progressively remove parts of the image, first the plant structure, then the background, until only

the wires remained. The difficulty in a system like this is determining the threshold value for

describing each of the objects in the image; for example in the saturation image the wires appear

visible, but a change in lighting or wire reflectivity could change how the wires are represented or

even completely remove them from the image.

Figure 8: Original RGB Image split into separate Hue, Saturation, and Value channels

Fitting Wires
The vine pruning robot already has a robust method for fitting wires to the classified data based on

the least squares algorithm (17). We however briefly cover several methods for fitting the wires for

completeness.

Linear Regression with Least Squares

Linear Regression using Least Squares is a fast and computational efficient method for calculating a

straight line through a set of data points. The method first takes the mean of the data set which the

final model is expected to intercept. This then constrains the problem, as only the slope of the line

now needs to be found. The slope can be found by measuring the sum of the squared distances the

X parameter of each data point varies from the means, and then repeated for the Y parameter. This

method of fitting a line to the data points requires that only one wire exists in the data set. Linear

regression is also affected by outliers.

RANSAC

RANSAC or Random Sample Consensus is an iterative method of fitting a mathematical model to a

data set which contains outliers. RANSAC operates by first selecting a random subset of examples

from the data set. A model is then fitted to these examples. Every example that is not part of the

initial random subset is then tested against the model, if the example fits the model it is added to

the consensus set. This process is repeated, each time with a different initial subset of examples. For

each of the iterations, the size of the consensus set produced by the model is recorded. The model

with the largest consensus set is considered to best represent the data.

Hough Transform

The Hough Transform is a technique used for feature extraction based on a voting procedure. For

each data point presented to the algorithm, all possible model parameter sets which fit are given a

vote. After all of the data points in the data set have been processed, the parameter set with the

greatest number of votes is considered to best fit the data set. Figure 9 shows a set of potential wire

12

segments that need to have wires fitted to them. Note: there are a significant number of outliers in

this data set. In Figure 10 we can see each of the data points plotted in parameter space. For each

data point every possible line that intercepts is considered. The parameters of these lines are plotted

in parameter space; the angle of the line is mapped onto the x-axis and the distance that line is from

the centre of the images is mapped onto the y-axis. With this method of mapping each data point

produces a series of votes which appear sinusoidal. Parameter sets which more commonly match

the data, gain more votes and create a local maximums. These local maximum can then be projected

as lines back into the data set space; see the yellow lines in Figure 9. In this case the outliers in the

data set have not affected the fitting process because there were enough inliers to disregard them.

The Hough Transform performs well for detecting multiple lines from the same data set. By taking

the number of wires expected in the data set which is known, we look for that number of local

maxima in the parameter space.

Figure 9: Data space with two lines re-projected from
parameter space

Figure 10: Parameter Space with Theta mapped onto
the X axis and Radius onto the Y axis

13

System Design

System Input

Bayer Images

The system feeds Bayer Images into the classifier. Bayer Images offer several advantages over

traditional colour Images. The colour images (see Colour Images) provided by the system contain

three values for each pixel; one for each colour. While the Bayer Images only contain one value (see

Bayer Images), it contains at least as much information as a colour image, as the colour image is

created from it using a demosaicing algorithm (see Figure 11). We opted to base our system around

these images because the Bayer Image offers raw data untouched by post-processing such as

demosaicing. Bayer Images require fewer values to be fed into the classifier used to identify wire

pixels as each pixel only has one value. By reducing the amount of data fed to the classifier we can

reduce the risk of over fitting. The Bayer Image does however require four classifiers to be created;

one for each of the four colour locations (see Figure 13).

Figure 11: Comparison between Bayer and colour images containing the same segment of wire

Marked Images

Each Bayer image provided to the system was accompanied by a corresponding marked image. The

marked image was created by humans and was considered to be the ground truth. The marked

images contained several colour masks which isolate different regions to then be used during the

example creation phase. The wires were marked in the image with white lines with a width of 1

pixel. This one pixel width line did not mask out the entire wire because the wire generally has a

diameter of 3-5 pixels. To completely mask out the wire, a border of 2 red pixels was applied to the

white line. When the system is looking for positive examples it references this marked image looking

for white pixels. Any pixel that is not white or red in the marked image is a candidate negative pixel.

To control the distribution of negative examples we added two additional masks to the image. The

first mask was magenta and was used to mask out posts and other support structures (see Figure

12). The second mask was blue and was applied to the backdrop in the frames provided by the

robot. By adding these two additional masks we can choose the distribution of negative examples

that fall on the backdrop, posts, and the vine. Being able to adjust these distributions is important

because the backdrop alone takes up more than 80% of the image by area while the vine structure is

the most complex; requiring significantly more training examples to identify. If we were unable to

adjust these distributions we would have a large number of examples available to learn the simple

structure of the background and a small remaining set of examples to learn the complex structure of

the vine. In our default distribution, 10% negative examples fell on the backdrop, 10% on the posts

and support structure, and the remaining 80% fell on the vine.

14

Figure 12: Bayer and corresponding marked image

Support Vector Machines
The system uses four SVMs, each bound to a separate colour channel in the Bayer Image. A separate

SVM is required for each channel because the vector creation process is based on the layout of the

neighbouring pixels of the pixel being classified, for example depending on what channel is being

classified the pixel to the left of the pixel of interest will represent a different colour. The solution we

used to deal with the data, being location dependent, was to use separate SVMs for each channel.

This required the SVMs to be individually trained and tested as well as each having their own set of

features they used during the creation of vectors. Figure 13 shows the relative position of the four

SVMs.

Figure 13: Relative layout of the four SVMs

Creating Vectors

Vectors

A vector is an n-dimensional set of values representing some object. Each vector is constructed by

extracting a set of features which describe the object in question. Many algorithms in machine

learning and pattern recognition require information to be provided in this form. Each feature inside

the vector may represent a single attribute about the object such as a pixel’s brightness, or a

combination of attributes such as the mean brightness of all the pixels in a given location. A vector

can have a known class, such as wire or non-wire, or its class can be unknown in which case the

vector is considered un-labelled. When a vector has a known class it can be used for training the

classifier to recognise patterns and associations. Once a classifier has been trained it can then be

feed un-labelled data to classify. Because the training data used by the classifier needs to be labelled

R G1

G2 B

15

we need to find a way to identify the class of the vectors. In our work the training data was extracted

from images for which the wire locations had been identified by humans.

Features

In order for the classifier to identify whether a given pixel is part of a wire, we needed to develop a

system to create vectors that are able to describe the pixels. In the Bayer Image each pixel contains a

single byte on information which may represent one of three colours depending on its position in

the image. If we used this single byte to create the corresponding vector, the vector would only

contain one element and not enough information to identify the class of the pixel. In order for a

pixel to be classified we need to look at the attributes of neighbouring pixels. In this project we

consider all pixels in an eight by eight grid centred on the pixel of interest (see Figure 14) when

creating the describing vector. The 64 pixels inside this region of interest could be each treated as a

single feature, or combined to create a lower dimensional feature.

Figure 14: Neighbouring pixels inside the red region are used for creating the vector for the blue pixel of interest.

Creating a new feature for each neighbouring pixel passes more information to the classifier than a

smaller set of features built by combining pixels, however there are reasons why combining features

is preferable. Firstly by building and combining features we reduce the chances of the classifier over

fitting. Building and combining features abstracts away smaller details and can leave bigger more

important structures for the classifier to learn from. The second reason for combining features is

that it can reduce the total number of features in each vector. The more features that are used

during classification, the more computationally expensive each classification is. Also by reducing the

number of features in each vector the classifier can require less training examples before it reaches

an acceptable level of performance.

Trees

In order to generate features we needed to develop a system which could describe how and which

individual pixels would be combined. We wanted a system that would be robust and could be tuned

using meta-learning techniques such as genetic algorithms or an exhaustive search. One such

abstract data structure that was investigated was the tree. Trees could pull from a library of base

features such as rows, columns, individual pixels, and regions of pixels, and describe how to combine

them using arithmetic operators such as addition and subtraction (see Equation 1), or logical

operators such as, ‘and’, ‘not’, and ‘or’.

16

Equation 1: Example of feature created from a tree representation

 (()) ()

Trees have the advantage of having large amounts of research exploring their application in

describing solutions, such as linear regression and decision trees. Trees can have many techniques

applied to optimising them such as linear regression and pruning. The major downside to using a

tree representation for describing features is that they can be slow to traverse and with the large

amount of searching and classification required in this project, complex trees would make it

computationally infeasible to obtain large datasets for analysis in a tangible amount of time.

Masks

Masks are conceptually less complex than tree structures and ultimately cannot be described as

complex relationships. The masks used in this experiment were eight by eight 2-dimenisonal arrays

that masked out individual pixels. The mean value of the pixels that remained after the masking

process would then be used as a feature. While masks may not be able to describe as complex

relationships as trees can, they do still provide a large possible feature space, and do have the

massive advantage of computational efficiency. These masks can easily be represented as a 1-

dimensional bit string allowing for genetic algorithms to be easily applied should we wish to perform

a more extensive features search.

Feature Library

To reduce the search space of possible features to a tractable size we opted to create a feature

library and search for an optimal subset of features from within it. This feature library contained 96

features from the 64 neighbouring pixels. 64 of the 96 features were direct representations of the 64

individual pixels; the remaining 32 features were created by taking the mean value over the pixels in

each row and column. Because each row and column in the Bayer Images contains two colour

channels, two features were created for each one. In this implementation one feature might contain

the mean blue value for a column, while the other would contain the mean green; preventing the

colour channels from being combined. Early experimentation showed that merging the colour

channels resulted in a significant decrease in the performance of the classifier.

Vectorisers

The vectorisers are an abstraction used to convert the 64 neighbouring pixels into a vector which

could then be used during the training or classification processes. During the development phase we

created multiple vectorisers. These vectorisers allowed us to test the effectiveness of different

methods of feature creation such as taking the mean value of a set of pixels. The final vectoriser was

implemented using the previously discussed masks. When provided with raw data from the Bayer

Image and a set of masks, the vectoriser would iteratively apply each mask and compute the mean

pixel value. Each mean pixel value would be added to the final vector used as a feature to describe

the pixel currently being classified.

Finding Examples
The data creation pipeline (DCP) creates examples used for training and testing the classifier. Each

example produced by the DCP contains two parts, the first is the vector which contains the features

describing the example, and the second is the class of the example; whether it is positive or

negative. During the development of the system we created a revised version of the DCP; however

17

both versions maintained many similarities. Both versions used a previously marked image (see

Figure 12) to identify the different regions of the image, and a Bayer Image to extract the raw data

from. Both versions also used a vectoriser to convert the 64 pixels into a corresponding vector and

could shuffle the data if it was required; such as with N-fold cross validation techniques.

Two subroutines were used by both versions of the DCP for finding a given number of wire examples

and non-wire examples. These subroutines randomly find the locations of wire and non-wire

examples by referencing the provided marked image. However the way the two DCP

implementations used these subroutines differed. The initial implementation was provided with two

numbers; the quantity of positive and negative examples to be found by the subroutines (see Figure

15). The revised implementation of the DCP removed these two numbers from the inputs and

replaced them with two sets of examples; the positive and negative (see Figure 16). These two

subroutines were removed from the DCP to allow for more control of the systems behaviour. The

initial implementation would randomly find new example locations each time it was run. This

resulted in additional variance, for example when trying to measure the effect of making changes to

the vectoriser. By moving the subroutines out of the DCP, we are able to use the same example

locations but use different vectorisers and thereby different vectors describing the same examples.

Figure 15: Initial Data Creation Pipeline

Figure 16: Revised Data Creation Pipeline

Measuring Performance

Marked Images

In order to measure the performance of the classifier we need to first determine what is and is not a

correct classification. When we trained the system we only used positive examples that fell on the

white pixels, however when it comes to measuring the performance of the classifier, any pixel that

falls on the red border (see Figure 17) of the wire will also be counted as a correct classification.

Using this method we can avoid the issues caused by the wire not being a constant width across a

given frame and between multiple frames.

18

Figure 17: Marked wires with boundary guard area

Entire Image Classification

Initially we measured the performance of the system by classifying an entire image. This approach

seemed logical because it is the task that the classifier would be expected to perform once it was

deployed. However this method of analysis did have two significant drawbacks. Firstly the time

taken to classify an entire image was about 4 seconds which made it computationally infeasible to

run large experiments, for example when performing feature searches which have large search

spaces. The second issue is that this method had a lot of variability between classification attempts

making the process of fine tuning parameters difficult.

10-Fold Cross Validation

In order to run larger more accurate experiments it became apparent that we needed a new method

to gauge the performance of the classifier. We opted for a K-fold cross-validation technique,

specifically 10-fold which is a common approach to measuring the performance of classifiers. In K-

fold cross-validation the samples are shuffled and split into k partitions of equal size. One of these k

partitions is then used for testing the classifier while the remaining k-1 partitions are used to train

the classifiers performance. This process is repeated k times with each fold being used once for

validation. The samples are shuffled to ensure that each fold has approximately the same

distribution of positive and negative examples.

We found that 10-fold greatly reduced the amount of variability between independent experiments

when compared with the entire image classification method of measuring performance. By only

using 10,000 examples in the 10-fold cross-validation, instead of the 1.2 million in the classification

of the entire image, we dramatically reduced the running time required.

Performance Measures

We can directly measure the number of true positive, true negative, false positive and false negative

classifications made by the classifier. From these four values we can then create more useful

performance measures such as precision and recall. Initially we used the precision of the classifier to

gauge its performance. However as we tuned the classifier in an effort to push the precision higher,

we saw a dramatic drop-off in the overall recall of the classifier. If the classifier is achieving 100%

precision but only classifying a few 10s of pixels as wires, we will be unable to fit wires to the points

and the data will be effectively useless.

19

In order to maintain an acceptable recall level while driving up the precision, a performance

measure that accounted for both the precision and recall of the classifier was required. The F-score

is a commonly used measure of accuracy that meets these requirements. The F-Score is essentially a

weighted average between precision and recall as defined in Equation 2. From the F-Score

distribution in Table 1 we can see that the F-Score is low when either the precision or recall is low;

larger F-Scores are only achieved when both the precision and recall values are large.

Equation 2: F-Score definition

Table 1: Resultant F-Score values for various precision and recall values

Finding the ideal feature set
Finding the ideal set of features to be used for vector creation is crucial to optimising both the

performance and classification time required by the classifier (18). Each additional feature used by

the classifier increases the amount of time required to classify the example. Having redundant

additional features also runs the risk of the classifier over fitting the training data. An example often

used to describe this is the diagnoses classifier. If a classifier is fed a set of parameters about a

patient in order to diagnose the patient’s illness, we wouldn’t expect the patient’s ID number to be

any help in the diagnoses process, however if there is not enough training examples then the

classifier may falsely identify a pattern in the patient ID numbers. By reducing the number of

features fed to the classifier we can reduce any redundant data being fed to the classifier (19).

We used two methods for finding the ideal feature sets for each support vector machine. Even with

a feature library of only 96 features, there is a computationally infeasible number of ways of

selecting a subset of features. In order to select a near optimal subset of features we used two

greedy algorithms, Add one in and Leave one out.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.00 0.10 0.13 0.15 0.16 0.17 0.17 0.18 0.18 0.18 0.18

0.2 0.00 0.13 0.20 0.24 0.27 0.29 0.30 0.31 0.32 0.33 0.33

0.3 0.00 0.15 0.24 0.30 0.34 0.38 0.40 0.42 0.44 0.45 0.46

0.4 0.00 0.16 0.27 0.34 0.40 0.44 0.48 0.51 0.53 0.55 0.57

0.5 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.67

0.6 0.00 0.17 0.30 0.40 0.48 0.55 0.60 0.65 0.69 0.72 0.75

0.7 0.00 0.18 0.31 0.42 0.51 0.58 0.65 0.70 0.75 0.79 0.82

0.8 0.00 0.18 0.32 0.44 0.53 0.62 0.69 0.75 0.80 0.85 0.89

0.9 0.00 0.18 0.33 0.45 0.55 0.64 0.72 0.79 0.85 0.90 0.95

1 0.00 0.18 0.33 0.46 0.57 0.67 0.75 0.82 0.89 0.95 1.00

Precision

R
e

ca
ll

20

Add one in method

The Add one in algorithm is a simple method of finding a small set of good features. Given the

current set of features, individually test each of the remaining features with the current feature set.

Select the feature that performed best with the current feature set and add it to the current feature

set. This process is continued until the desired number of features has been selected, or the

performance of the classifier has stopped increasing.

There is one significant draw back to the add one in algorithm and that is because no matter which

features you select, the classifier cannot make any correct positive classifications when it has very

few features. When the classifier is not making any positive classifications there is no way of

distinguishing the difference in performance of various subsets of features. To allow the classifier to

make some positive classifications we seed the algorithm with a small set of features which have

performed well during the development phase.

Leave one out

The leave one out method is essentially the reverse of the Add one in method (20). It works by

seeding the current feature set with all features. Then individually, each feature is tested to see

what effect removing it has on the classifier’s performance. The feature which has the least negative

impact or most positive impact on the classifier’s performance is then removed from the current

feature set and the process is repeated. This approach has the advantage of not requiring a subset of

features to first be selected by another means, removing the bias which is present in the Add one in

method. However when a large number of features are present in the current feature set, removing

one feature has a very small effect of the performance of the classifier. Therefore it is important to

have an accurate way of measuring this performance. The entire image classification method did not

achieve the required level of accuracy and it was not until we began using the 10-fold cross-

validation technique that the leave one out method became feasible.

Finding the optimal SVM Hyper-parameters
The classifier used for this project was a support vector machine with a Radial Bases Function (RBF)

kernel. The RBF kernel is used to map the features into a higher dimensional space where a splitting

plane can be found. The RBF kernel has two hyper-parameters, C and Gamma, which need to be

correctly selected in order to gain the optimal performance from the classifier (21). The C hyper-

parameter is used to define the relationship between misclassifying training examples and the

simplicity of the splitting plane. A high C value will result in a complex splitting plane and more of the

training examples being correctly classified, while also risking over-fitting the classifier to the data. A

low C value will result in a simple splitting plane, while potentially misclassifying some of the training

data; this simple splitting plane may be too simplistic and not correctly describe the larger scale

relationships in the data. The Gamma value used by the RBF kernel defines the region of influence of

each training example. Small values of Gamma result in a small region of influence and large value in

a large region of influence.

We used a 2-dimensional grid-search to find the optimal C and Gamma values for the SVMs (22). We

searched for a C value between 2-5 and 215, and for a Gamma value between 2-10 and 210. In a grid

search the columns represent one variable and the rows represent the other. In this experiment the

columns represented the Gamma values from 2-10 to 210 and the rows represented the C values from

2-5 to 215. The search algorithm then iterates of the grid and stores the classifiers performance for

21

the given set of parameters in their corresponding cell in the grid. A gradient descent method for

finding the optimal set of values may be more computationally efficient; however a gradient descent

algorithm can become trapped in local minima and are not easily parallelised. Our grid search

algorithm recorded precision, recall, and F-Score values of the classifier. Alternatively the grid

search can be performed using the empirical classification error as a performance measure.

22

Results
Table 2: Precision values from Hyper-Parameters Grid Search

In Table 2 we can see the precision values for each set of hyper-parameters produced by the grid

search. Cells coloured red have the lowest precision values, yellow cells have a higher precision value

and green cells have the highest precision.

Table 3: Recall values from Hyper-Parameters Grid Search

In Table 3 we can see the recall values for each set of hyper-parameters found by the grid search.

The colouring scheme is the same used in Table 2.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-5 .00

-4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .48 .25

-3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .92 .91 .92 .96

-2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .99 .90 .89 .88 .88 .90

-1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .97 .89 .88 .87 .86 .86 .88

0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .25 .93 .88 .87 .86 .85 .85 .86 .88

1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .25 .93 .89 .87 .86 .85 .85 .85 .86 .88

2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .67 .92 .88 .86 .85 .85 .84 .85 .85 .86 .89

3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .67 .92 .88 .85 .85 .84 .84 .84 .84 .85 .87 .89

4 .00 .00 .00 .00 .00 .00 .00 .00 .67 .91 .88 .85 .84 .84 .84 .84 .84 .84 .85 .87 .89

5 .00 .00 .00 .00 .00 .00 .00 .67 .91 .88 .84 .83 .83 .83 .83 .83 .83 .84 .85 .87 .89

6 .00 .00 .00 .00 .00 .00 .63 .91 .88 .84 .83 .83 .83 .83 .83 .83 .83 .83 .85 .87 .89

7 .00 .00 .00 .00 .00 .63 .91 .88 .84 .82 .82 .83 .83 .82 .82 .81 .81 .82 .84 .87 .89

8 .00 .00 .00 .00 .63 .91 .88 .84 .82 .82 .82 .82 .82 .78 .79 .76 .79 .81 .84 .87 .89

9 .00 .00 .00 .63 .91 .88 .84 .82 .82 .82 .81 .80 .75 .66 .66 .70 .78 .81 .84 .87 .89

10 .00 .00 .63 .91 .88 .84 .82 .82 .82 .82 .79 .60 .47 .45 .60 .68 .78 .81 .84 .87 .89

11 .00 .63 .91 .88 .84 .82 .82 .82 .81 .67 .47 .39 .47 .43 .58 .68 .78 .81 .84 .87 .89

12 .63 .91 .88 .84 .82 .82 .81 .81 .63 .45 .41 .33 .36 .44 .58 .68 .78 .81 .84 .87 .89

13 .91 .88 .84 .82 .82 .81 .79 .64 .55 .39 .37 .36 .36 .44 .58 .68 .78 .81 .84 .87 .89

14 .88 .84 .82 .82 .81 .81 .61 .42 .32 .27 .37 .37 .36 .44 .58 .68 .78 .81 .84 .87 .89

15 .84 .82 .82 .81 .81 .54 .44 .24 .24 .25 .38 .37 .36 .44 .58 .68 .78 .81 .84 .87 .89

Gamma Exponent

C
 E

xp
o

n
e

n
t

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-5 .00

-4 .00

-3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .06 .20 .21 .10

-2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .15 .41 .53 .53 .40

-1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .19 .47 .62 .67 .65 .56

0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .19 .48 .64 .73 .74 .71 .65

1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .18 .46 .62 .74 .79 .78 .74 .67

2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .17 .43 .60 .73 .80 .82 .79 .74 .67

3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .16 .41 .57 .70 .78 .82 .82 .79 .73 .67

4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .15 .39 .55 .67 .76 .82 .83 .82 .78 .73 .66

5 .00 .00 .00 .00 .00 .00 .00 .00 .02 .15 .39 .53 .64 .73 .80 .83 .83 .81 .77 .73 .66

6 .00 .00 .00 .00 .00 .00 .00 .02 .15 .38 .52 .62 .71 .78 .82 .83 .82 .79 .77 .72 .66

7 .00 .00 .00 .00 .00 .00 .02 .14 .38 .51 .60 .68 .76 .81 .83 .82 .80 .78 .76 .72 .66

8 .00 .00 .00 .00 .00 .02 .14 .37 .51 .59 .67 .73 .79 .81 .81 .79 .78 .78 .76 .72 .66

9 .00 .00 .00 .00 .02 .14 .37 .50 .59 .66 .72 .77 .76 .74 .74 .75 .77 .77 .76 .72 .66

10 .00 .00 .00 .02 .14 .37 .50 .58 .65 .71 .74 .71 .68 .66 .70 .74 .77 .77 .76 .72 .66

11 .00 .00 .02 .14 .37 .50 .58 .65 .70 .72 .64 .56 .59 .63 .71 .74 .77 .77 .76 .72 .66

12 .00 .02 .14 .37 .50 .58 .64 .70 .69 .64 .50 .56 .56 .62 .71 .74 .77 .77 .76 .72 .66

13 .02 .14 .37 .50 .58 .64 .69 .68 .56 .52 .46 .56 .56 .62 .71 .74 .77 .77 .76 .72 .66

14 .14 .37 .50 .58 .64 .69 .69 .55 .44 .45 .45 .56 .56 .62 .71 .74 .77 .77 .76 .72 .66

15 .37 .50 .58 .64 .68 .66 .57 .46 .39 .42 .45 .56 .56 .62 .71 .74 .77 .77 .76 .72 .66

Gamma Exponent

C
 E

xp
o

n
e

n
t

23

Table 4: F-Score values from Hyper-Parameters Grid Search

In Table 4 we can see the F-Score for each set of hyper-parameters calculated from the precision

(Table 2) and recall (Table 3) values. We can see the precision values along the leading edge

(diagonal green line from bottom left to top right) are the largest found, however when we compare

these values with their corresponding recall values, we see that the classifier was achieving very low

recall levels. Both the precision and recall values were lower in the bottom-middle area of the table.

When we examine the F-Score values we can see that the optimal hyper-parameters were located in

the middle right portion of the table.

Figure 18: F-Score for the leave one out method for feature selection

In Figure 18 we can see the F-Score of the four SVMs during the leave one out feature selection

process. We can that the Blue and Green2 SVMs maintained a high level of performance until

around 10 features remained where the performance rapidly dropped. The Red and Green1 SVMs

had a significantly lower performance than the other two SVMs; their performance started falling

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-5 .00

-4 .00

-3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .11 .33 .34 .17

-2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .25 .56 .66 .66 .55

-1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .31 .61 .72 .75 .74 .68

0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .32 .62 .73 .79 .79 .78 .75

1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .30 .60 .72 .79 .82 .82 .80 .76

2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .28 .57 .70 .78 .82 .83 .82 .80 .76

3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .27 .55 .68 .76 .81 .83 .83 .82 .79 .76

4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .26 .54 .66 .74 .80 .83 .84 .83 .81 .79 .76

5 .00 .00 .00 .00 .00 .00 .00 .00 .03 .25 .53 .65 .72 .78 .82 .83 .83 .82 .81 .79 .76

6 .00 .00 .00 .00 .00 .00 .00 .03 .25 .52 .64 .71 .76 .80 .83 .83 .82 .81 .80 .79 .76

7 .00 .00 .00 .00 .00 .00 .03 .25 .52 .63 .70 .75 .79 .82 .82 .82 .81 .80 .80 .79 .76

8 .00 .00 .00 .00 .00 .03 .25 .52 .63 .69 .74 .78 .80 .79 .80 .77 .79 .79 .80 .79 .76

9 .00 .00 .00 .00 .03 .25 .52 .62 .68 .73 .76 .78 .76 .70 .70 .72 .77 .79 .80 .79 .76

10 .00 .00 .00 .03 .25 .52 .62 .68 .72 .76 .76 .65 .55 .54 .64 .71 .77 .79 .80 .79 .76

11 .00 .00 .03 .25 .52 .62 .68 .72 .75 .69 .54 .46 .52 .51 .64 .71 .77 .79 .80 .79 .76

12 .00 .03 .25 .52 .62 .68 .72 .75 .66 .53 .45 .41 .44 .52 .64 .71 .77 .79 .80 .79 .76

13 .03 .25 .52 .62 .68 .72 .74 .66 .56 .44 .41 .44 .44 .52 .64 .71 .77 .79 .80 .79 .76

14 .25 .52 .62 .68 .72 .75 .65 .47 .37 .33 .40 .44 .44 .52 .64 .71 .77 .79 .80 .79 .76

15 .52 .62 .68 .71 .74 .60 .49 .32 .30 .32 .41 .44 .44 .52 .64 .71 .77 .79 .80 .79 .76

Gamma Exponent

C
 E

xp
o

n
e

n
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

95 92 89 86 83 80 77 74 71 68 65 62 59 56 53 50 47 44 41 38 35 32 29 26 23 20 17 14 11 8 5 2

F-
Sc

o
re

Number of Features Remaining

Leave One Out Feature Selection

Blue

Red

Green1

Green2

24

much sooner and gradually. The blue and green2 SVMs initially increased in performance as features

are removed before plateauing and finally falling off.

Table 5: Comparison of Standard Deviation between Whole Image Classification and 10-Fold validation over 20 trials

In Table 5 we can see the Standard Deviation values for the two methods developed for measuring

the performance of the SVMs. We can see that the standard deviation for the whole image

classification method is approximately 2000 times greater than that of the 10-fold cross validation

method. This experiment was performed in order to find the method for measuring the performance

of the classifier with the least variability.

Figure 19: Blue feature mask

Figure 20: Green1 feature mask

Figure 21: Red feature mask

Figure 22: Green2 feature mask

In Figures (Figure 19, Figure 20, Figure 21, Figure 22) we can see which pixels, relative to the pixel of

interest, are being used for classification by each SVM. Red cells show the relative position of pixels

which are not being used for classification, yellow are pixels that are being used once, and green are

pixels being used twice. Pixels can be used twice if they are included in more than one feature such

as a row, column, or individual pixel. It is possible for a pixel to be used three times, however once

only 30 features remained, there were no instances where this occurred. In these images we can see

some structure to the remaining features, although the structure does vary between the feature

masks. All four feature masks have a somewhat uniform distribution vertically but vary substantially

in their horizontal distribution.

Whole Image Classification 10-Fold

Standard Deviation 0.019799 9.88E-06

1 0 0 1 0 0 0 1

1 0 0 1 1 1 0 0

0 0 1 1 0 0 0 1

0 0 1 1 1 0 0 1

2 0 2 1 1 0 1 1

0 0 1 1 1 0 0 0

1 1 0 2 0 0 1 1

0 0 1 1 1 0 0 0

1 2 1 2 0 1 0 2

1 1 2 0 0 0 0 0

1 1 1 0 1 0 1 0

2 0 1 1 0 0 0 1

0 1 0 1 0 1 0 1

1 1 1 0 0 0 0 0

0 1 0 1 0 2 0 1

1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

2 1 1 1 0 0 0 0

1 1 1 0 0 0 1 0

1 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0

2 1 0 1 0 1 0 0

0 2 0 1 0 1 1 2

1 2 0 2 0 1 0 1

0 0 1 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 1 1 1 1 0 0

1 0 1 0 1 0 0 0

1 0 1 2 0 1 0 0

0 0 1 0 1 0 0 0

1 1 2 1 2 0 1 0

0 0 1 1 1 0 1 0

25

Table 6: Precision values from Examples Grid Search

Table 7: Recall values from Examples Grid Search

Table 8: F-Score values from Examples Grid Search

Table 6 shows the relationship between the classifier’s precision and the amount of positive and

negative training examples used. This relationship shows that having significantly more positive than

negative, or negative than positive, results in the classifier achieving lower levels of performance.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

1 .248 .242 .241 .237 .231 .229 .232 .226 .222 .212 .223 .215 .209 .205 .189 .219 .205 .204 .208 .195 .208 .204 .206 .208 .207

2 .198 .242 .237 .240 .240 .240 .236 .234 .232 .232 .230 .231 .230 .228 .229 .222 .217 .231 .216 .232 .226 .221 .221 .230 .220

3 .212 .247 .246 .245 .243 .239 .239 .238 .239 .236 .234 .233 .236 .230 .230 .231 .230 .228 .227 .233 .229 .229 .229 .229 .229

4 .220 .246 .245 .242 .245 .243 .241 .240 .241 .242 .238 .237 .235 .237 .235 .236 .236 .234 .233 .235 .234 .233 .233 .232 .235

5 .225 .246 .245 .247 .243 .244 .242 .242 .244 .242 .241 .242 .238 .240 .238 .236 .241 .236 .239 .237 .234 .237 .237 .236 .237

6 .230 .223 .245 .245 .245 .245 .243 .245 .243 .245 .240 .241 .240 .241 .240 .240 .241 .239 .241 .240 .239 .237 .239 .235 .236

7 .230 .215 .246 .246 .246 .246 .245 .245 .244 .244 .241 .242 .245 .241 .241 .240 .239 .241 .239 .241 .238 .240 .239 .236 .240

8 .235 .214 .246 .246 .247 .246 .245 .245 .244 .244 .245 .243 .244 .244 .243 .241 .240 .241 .240 .242 .239 .240 .243 .242 .240

9 .235 .218 .246 .247 .247 .245 .245 .246 .245 .245 .243 .245 .243 .242 .241 .242 .240 .242 .240 .243 .242 .242 .241 .240 .241

10 .237 .220 .245 .245 .247 .246 .245 .247 .247 .246 .244 .244 .245 .244 .243 .245 .243 .243 .240 .242 .242 .242 .240 .241 .241

11 .238 .222 .248 .248 .247 .247 .246 .247 .246 .246 .245 .244 .245 .244 .244 .245 .243 .244 .244 .243 .242 .242 .242 .244 .243

12 .239 .223 .247 .247 .248 .247 .246 .247 .246 .247 .245 .245 .245 .244 .244 .245 .245 .244 .244 .244 .244 .243 .244 .242 .243

13 .240 .228 .240 .249 .247 .248 .247 .247 .247 .247 .245 .246 .246 .245 .244 .245 .243 .244 .245 .243 .244 .244 .244 .243 .243

14 .240 .227 .225 .248 .247 .248 .248 .247 .247 .246 .247 .247 .245 .245 .245 .245 .245 .244 .244 .245 .245 .244 .244 .244 .245

15 .241 .228 .225 .249 .249 .248 .248 .247 .247 .247 .246 .246 .246 .246 .246 .246 .246 .244 .246 .245 .244 .245 .245 .244 .245

Non-Wire Examples (hundreds)

W
ir

e
 E

xa
m

p
le

s
(h

u
n

d
re

d
s)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

1 .177 .160 .141 .134 .154 .123 .144 .140 .131 .139 .145 .116 .120 .133 .109 .141 .125 .118 .116 .103 .105 .138 .124 .106 .126

2 .250 .179 .177 .181 .173 .158 .155 .166 .173 .171 .162 .157 .168 .156 .166 .153 .159 .178 .158 .166 .166 .157 .159 .166 .169

3 .249 .192 .187 .180 .180 .182 .179 .178 .182 .175 .172 .175 .173 .170 .178 .173 .171 .171 .175 .179 .169 .172 .178 .167 .178

4 .250 .208 .198 .192 .195 .191 .193 .192 .195 .190 .188 .188 .191 .188 .188 .185 .188 .188 .187 .181 .186 .189 .180 .185 .186

5 .249 .218 .205 .202 .199 .200 .198 .197 .198 .200 .197 .198 .194 .199 .194 .192 .193 .194 .190 .195 .190 .197 .188 .194 .194

6 .250 .237 .212 .205 .208 .209 .204 .202 .202 .206 .201 .206 .201 .203 .205 .203 .206 .204 .205 .207 .203 .201 .206 .203 .207

7 .250 .249 .220 .218 .210 .206 .212 .212 .211 .210 .213 .208 .206 .207 .207 .215 .212 .212 .204 .208 .211 .208 .206 .214 .212

8 .250 .250 .224 .216 .219 .216 .216 .216 .215 .213 .213 .213 .213 .215 .215 .216 .215 .214 .210 .211 .208 .215 .215 .215 .212

9 .250 .250 .228 .218 .225 .222 .217 .223 .217 .214 .220 .221 .217 .217 .217 .216 .220 .219 .214 .216 .219 .214 .217 .217 .219

10 .250 .250 .234 .223 .222 .225 .226 .220 .223 .221 .225 .223 .225 .224 .222 .222 .220 .218 .222 .223 .221 .222 .220 .217 .221

11 .250 .250 .238 .232 .227 .227 .227 .227 .225 .226 .224 .225 .225 .218 .226 .225 .227 .223 .224 .227 .222 .228 .225 .222 .225

12 .250 .250 .236 .234 .233 .228 .225 .231 .230 .226 .227 .229 .229 .228 .229 .224 .228 .229 .229 .226 .225 .226 .228 .229 .228

13 .250 .250 .245 .232 .230 .232 .230 .235 .231 .230 .230 .232 .231 .230 .232 .228 .226 .228 .229 .228 .227 .229 .229 .230 .229

14 .250 .250 .250 .236 .236 .234 .232 .235 .231 .233 .234 .234 .235 .234 .233 .230 .235 .232 .232 .231 .233 .233 .233 .235 .232

15 .250 .250 .250 .239 .235 .234 .237 .237 .236 .236 .236 .237 .234 .235 .237 .235 .235 .231 .233 .237 .235 .236 .235 .235 .232

Non-Wire Examples (hundreds)

W
ir

e
 E

xa
m

p
le

s
(h

u
n

d
re

d
s)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

1 .207 .193 .178 .171 .185 .160 .177 .173 .165 .168 .176 .151 .152 .161 .138 .172 .155 .149 .149 .134 .140 .164 .155 .141 .157

2 .221 .206 .202 .206 .201 .190 .187 .194 .198 .197 .190 .187 .194 .185 .192 .181 .183 .201 .182 .193 .191 .183 .185 .193 .191

3 .229 .216 .213 .207 .207 .207 .205 .204 .206 .201 .198 .200 .199 .196 .200 .198 .196 .196 .197 .202 .194 .196 .200 .193 .200

4 .234 .226 .219 .214 .217 .214 .214 .213 .216 .213 .210 .210 .211 .210 .209 .207 .209 .208 .207 .204 .207 .209 .203 .206 .207

5 .237 .231 .223 .222 .219 .219 .218 .217 .219 .219 .217 .218 .214 .217 .213 .211 .214 .213 .212 .214 .210 .215 .209 .213 .213

6 .239 .230 .227 .223 .225 .225 .222 .221 .221 .224 .219 .222 .219 .220 .221 .220 .222 .220 .221 .222 .219 .217 .221 .218 .221

7 .240 .231 .232 .231 .227 .224 .227 .228 .227 .226 .226 .223 .224 .223 .223 .227 .225 .225 .220 .223 .223 .223 .221 .224 .225

8 .242 .230 .234 .230 .232 .230 .229 .230 .229 .227 .228 .227 .228 .228 .228 .228 .226 .226 .224 .225 .222 .227 .228 .228 .225

9 .242 .233 .237 .231 .236 .233 .230 .234 .230 .228 .231 .232 .229 .229 .228 .228 .230 .230 .226 .229 .230 .227 .228 .228 .229

10 .243 .234 .240 .234 .234 .235 .235 .233 .234 .233 .234 .233 .235 .234 .232 .233 .231 .230 .231 .232 .231 .232 .230 .228 .230

11 .244 .235 .243 .240 .237 .236 .236 .236 .235 .236 .234 .234 .234 .230 .234 .234 .235 .233 .234 .235 .232 .235 .233 .232 .233

12 .244 .235 .242 .240 .240 .237 .235 .238 .238 .236 .236 .237 .237 .236 .236 .234 .236 .236 .236 .235 .234 .234 .236 .235 .235

13 .245 .238 .242 .240 .238 .240 .238 .241 .239 .238 .238 .239 .238 .237 .238 .236 .235 .236 .237 .235 .235 .236 .236 .236 .236

14 .245 .238 .237 .242 .241 .241 .240 .241 .238 .239 .240 .240 .240 .240 .239 .237 .240 .238 .238 .238 .239 .238 .238 .239 .238

15 .245 .239 .236 .244 .242 .241 .242 .242 .241 .241 .241 .242 .240 .240 .242 .240 .240 .238 .239 .241 .239 .240 .240 .240 .238

Non-Wire Examples (hundreds)

W
ir

e
 E

xa
m

p
le

s
(h

u
n

d
re

d
s)

26

Table 7 shows that once the number of negative examples used by the classifier is greater than 500,

further increasing it has a minimal effect on the recall ability of the classifier. Instead the recall

ability is mostly dependent on the number of positive examples used for training. We can see that

the classifier achieves an excellent level of recall with less than 500 negative examples. This also

corresponds to a reduced level of precision seen in Table 6. The reduced number of negative training

examples results in the classifier making a larger number of positive classifications; reducing the

precision and increasing the recall.

Table 8 shows the resulting F-Scores from the Example Search. We can see that the overall

performance of the classifier is largely dependent on the number of positive examples, and less on

the number of negative examples. The classifier achieves the highest F-Scores when the number of

negative numbers is smaller. We are primarily interested in increasing the precision of the classifier

and secondarily in the recall, while the F-Score evenly weights both of these values. For this reason

we would be more inclined to look at the individual Recall and Precision results rather than the

combined F-Score for analysing this experiment.

Table 9: Comparison of classification with different feature sets

In Table 9 we can see the overall performance of the classifier for different feature sets. We can see

that when using the 20 best selected features the classifier achieved a mean precision of 0.88 and

recall of 0.051 which is significantly lower than the three other feature sets, however it did perform

the classification in less time; only 1.7 seconds. The Row/Col, All 96, and Raw features sets all

achieved similar precision scores. The Row/Col feature set achieved a smaller recall value than using

all 96 features and the raw feature set. The selected feature set consisted of 20 features, the

Row/Col feature set consisted of 32 features, and feature set which contained all of the features in

the features library had 96 total features. We can see that these 4 feature sets took a classification

time proportional to the amount of features they used. The recall values achieved are smaller than

what might be expected from a SVM, this is due in part to the method used for measuring

performance; which is done pixel by pixel. Over an entire wire, having 5% of the pixels found is

enough to classify the wire, if a high level of precision is achieved (see Figure 25 which achieved 7%

recall).

Precision Recall Time Precision Recall Time Precision Recall Time Precision Recall Time

Image 1 .891 .055 1.65 .950 .160 1.90 .952 .225 5.03 .951 .218 2.91

Image 2 .887 .053 1.72 .939 .137 1.98 .938 .208 5.08 .936 .196 3.01

Image 3 .930 .065 1.73 .956 .186 1.90 .934 .227 5.10 .939 .223 3.04

Image 4 .885 .043 1.69 .908 .124 1.90 .912 .190 5.01 .915 .183 3.01

Image 5 .878 .043 1.67 .919 .119 1.86 .926 .181 5.00 .927 .171 3.03

Image 6 .786 .043 1.69 .894 .128 1.88 .927 .187 5.02 .923 .178 3.04

Image 7 .909 .053 1.69 .943 .178 1.90 .933 .232 5.03 .938 .228 3.06

Image 8 .869 .052 1.67 .973 .159 1.87 .967 .223 5.00 .970 .217 3.01

Mean .879 .051 1.69 .935 .149 1.90 .936 .209 5.03 .937 .202 3.01

Selected Features Row/Col Features ALL Features Raw Features

27

Figure 23: Time required by the vectorisation and classification portion of the system for varying numbers of features on
a 960 by 1280 pixel image

In Figure 23 we can clearly see the relationship between the number of features in a vector and the

amount of time required for the classification to be completed. The relationship appears to be

asymptotically linear.

Figure 24: All 96 features (precision 0.94, recall 0.22)

Figure 25: 20 Best Features (precision 0.93, recall 0.07)

Figure 24 and Figure 25 visually show the difference between the different feature sets used for

classification. These images show a sub-region of the images used for measuring the performance of

the classifiers. We can see that using all 96 features gives a much higher rate of recall than using the

20 best features found. In this comparison we can see that both classifiers have achieved a similar

level of precision, however in other images this in not the case (Table 9).

0

1

2

3

4

5

6

0 20 40 60 80 100

C
la

ss
if

ic
at

io
n

 t
im

e
 (

s)

Number of features

Full image classification time for
varying numbers of features

Selected Features

Row/Col Features

Raw Features

ALL Features

28

Discussion

Hyper-Parameters
Choosing the optimal hyper-parameters was key to getting the highest performance from the

classifier. Using a grid search allowed us to visualise the possible search space and choose the best

values for C and Gamma. This search shows the relationship between C and Gamma and how varying

these parameters could affect the precision and recall achieved by our classifier. By using the F-Score

we are able to select a set of hyper-parameters that achieve both good precision and recall values.

We can see that the optimal hyper-parameters were C = 24 and Gamma = 26. We can generally

sacrifice recall to increase precision so long as enough positive classifications can be made to still fit

a wire; increasing the precision means there are less false positives which will make subsequent

tasks, like wire fitting, easier.

Feature Selection
The feature selection process is required to reduce the number of features while still maintaining an

acceptable level of performance. Fewer features results in less computation when creating each

vector and by the SVM in order to classify each example. While performing the leave one out

method of feature selection we observed some interesting behaviour. Two of the support vector

machines diverged from the other two, while each pair of SVM maintained a very similar level of

performance throughout the feature selection process. The blue and green2 SVMs both initially

showed slight increases in performance as features were being removed. This can be attributed to

reducing the amount of over fitting done by the classifier which is often caused by having redundant

or useless features in the training data. We then see the performance plateaued until only 20

features remain; at this point the performance begins a rapid decline which is to be expected as the

classifier starts to starve for features and can no longer maintain a high level of performance. The

red and green1 SVMs showed a different performance profile as features were removed, neither

showed the initial increase in performance that was observed in the blue and green2 SVMs. Once

only 60 features remained, both red and green1 SVMs began their decline in performance; some 20

features earlier than in the other two SVMs. At 30 remaining features, both red and green1 SVMs

had begun rapid decline in performance, approximately 10 features earlier than the other two SVMs.

It is unknown what would cause the divergence in performance between the classifiers however it is

worth noting that both the red and green1 SVMs fell on the same row while the blue and green2

SVMs fell on the row below (see Figure 13). Additional testing would need to be done in order to

discover the course of this divergence; all four SVMs were given access to the same feature library

and trained under the same set of conditions.

Training Examples
Selecting the optimal set of training examples is critical for allowing the SVMs to correctly calibrate

the misclassification costs. As can be seen in Table 8, selecting too few positive examples results in

the decreased performance of the classifier. Not selecting enough Negative examples results in a

larger number of false positives and a decreased precision. Not selecting enough positive examples

results in a reduced recall rate which can be seen in Table 8; the F-Scores only begin to reach optimal

values after 400 positive examples are included in the training data.

29

Overall Performance
Given the optimal hyper-parameters and number of training examples found previously, we tested

the performance of the classifier using four different feature sets. Three of the four feature sets

used the pixel masking system previously discussed; these were the 20 optimal features for each

SVM, the 32 alternating rows and columns, and the full set of 96 features. The fourth feature set

contained 64 features; one for each pixel. This final feature set did not use a mask based vectoriser

like the other three feature sets, instead it used a vectoriser which directly iterated over a region of

interest centred on the pixel being classified.

Classification Time

The time taking to classify an entire image increases in relation to the number of features used in

each vector. This polynomial growth in performance is to be expected because the underlying SVM

implementation scales between (
) and (

) (18). We

were expecting the Raw Features experiment to fall slightly off this trend because its iterative

method of vectorisation is more efficient than the mask based method. The mask based method

requires that the vectoriser iterates over 64 Boolean values for each feature, then perform a

comparison and fetch a value if the given pixel is part of the current feature, while the Raw feature

set only iterates over the 64 pixels once, creating features out of each pixel. However this

difference in performance was not observed because the time taken for vectorisation was negligible

in comparison to the time required for classification. The results obtained reiterate the importance

of reducing the size of the feature set in order for the system to be able to classify examples at an

acceptable rate. While even the fastest of the experiments, taking 1.69 seconds, is not fast enough

for deployment. The classification time could be significantly reduced by pre-processing the images

with a fast heuristic classifier, providing a level of boosting by removing pixels with a low likelihood

of belonging to a wire; such as pixels that fall on the blue backdrop.

Recall

We see a significant decrease in the recall of the classifiers as the feature sets are reduced. All 96

features and the Raw 64 features both achieved high recall values of 0.21 and 0.20 respectively. The

96 features did not achieve a significantly greater recall value than the raw 64 features. This is

because there is no additional information as the 32 additional features are derived from the original

64. When using the row/col feature set we observed a significant drop in recall down to 0.15. The

recall continues falling as we reduce the size of the feature set. With the 20 best features remaining

we have the lowest recall of 0.05. This relationship shows that the recall drops significantly as the

size of the feature set decreases. However achieving a recall rate of 0.05 still allows for the accurate

identification of wires; this can be observed by comparing Figure 24 and Figure 25.

Precision

The precision value maintains a value between 0.93 and 0.94 for the experiments with the larger

features sets, row/col, all 96, and raw. The 20 best selected features did have a reduced precision of

0.88, which is a significant difference from the other three feature sets. While the precision level of

0.88 is significantly lower than what was achieved by the other feature sets, this level of precision

should still be great enough to allow for the wires’ locations to be found; as seen by comparing

Figure 24 and Figure 25.

30

Improving Classification Time
The camera on the robot captures 7.5 frames each second, this gives the system 133ms to perform

all of the classification and decision making tasks. The wire detection system is not required to

operate at this speed because most of the content in one frame will still be visible in the next. It

would make integration into the system easier if it could perform at this speed.

By finding the optimal subset of features used by the classifier, we have decreased the amount of

time required for classification. However to achieve a significant improvement in performance we

need to find more effective means of optimising the classifier. One such way of reducing the

computation required would be to use a pre-processing heuristic. This pre-processor for example

could mask out all of the pixels belonging to the blue background. The accurate classifier driven by

the techniques discussed here would then only attempt to classify the remaining pixels. In some

images more than 90% of the pixels belonged to the background so this technique alone could

achieve a significant boost in performance.

31

Conclusion
We have developed a system for training a classifier ideally suited to classifying wires from images of

the canopy of grape vines. Our proposed classifier is not required to be tuned and uses no heuristics

to identify wires. Instead we use a set of training data to train the system how to accurately identify

wires. This frees the end user from the burden of manipulating parameters in order to achieve the

desired results. The system only requires that the user provides an image containing the locations of

the wires and allow the system to learn how to identify them.

We have been able to achieve precision and recall values great enough to allow wires to be fitted to

the classified pixels. These classified pixels can then be fed into the wire fitting system to find a wire

model which represents the wire locations.

Future work
Ultimately the classifier presented would be only a portion of a system designed to extract the wire

locations. By applying pre-processing techniques such as the removal of noise or large scale objects

from the image, the task performed by the classifier can be simplified. Post-processing techniques

such as the N out of M test used in our previous research (wire detection with neural networks)

could be used to reduce the number of false positives.

The cause of the divergence observed in the performance between the two sets of SVMs during the

feature selection process remains undiscovered. One explanation is the eight by eight region of

pixels was unable to constantly have good features created from it depending on the pixel colour it

was centred on. To test this theory the use of a larger region of interest, perhaps ten by ten pixels,

could be used to eliminate this effect.

We found four separate optimal subsets of features; one for each SVM. We did not however find

individual hyper-parameters for each SVM. It was assumed that finding individual sets of hyper-

parameters would result in similar values being found as the SVMs were working in the same

problem space. However some additional performance may be obtainable by treating the hyper-

parameters separately for each SVM.

The vines belonging to a vineyard will not all be homogeneous, instead plant structure will vary

based on soil quality, irrigation, frost, etc.; all of these can vary across a single vineyard. The varying

plant structure will affect the plant canopy and ultimately the environment the wires are being

extracted from. In order to allow the system to adapt to slow changes across a vineyard we propose

the development of a dynamic training system. This would allow the system to be constantly

learning and adapting to variations in the input data.

32

Bibliography
1. Trent Ball, Raymond J. Folwell, Jack Watson, Markus Keller. Establishment and Annual

Production Costs for Washington Concord Grapes. Washington : WSU Extension, 2004.

2. Construction a Vineyard Trellis. Domoto, Paul. s.l. : Iowa State University, 2002. Iowa Grape

Growers Conference.

3. Dennis J. Yelton, Robert L. Wright. System and Method for Passive Wire Detection. 7,512,258 B2

United Stated of America, 19 July 2005.

4. A Fast and Robust Approach to Lane Marking Detection and Lane Tracking. Christian Lipski, Bjorn

Scholz, Kai Berger, Christian Linz, Timo Stich. Santa Fe : s.n., 2008. Southwest Symposium on Image

Analysis and Interpretation.

5. Detecting Structured Light Patterns in Colour Images using a Support Vector Machine. T. Botterill,

R. Green, S. Mills. Paris : s.n., 2013. International Conference on Image Processing.

6. An empirical comparison of supervised learning algorithms. Rich Caruana, Alexandru Niculescu.

Pittsburgh : s.n., 2006. International Conference on Machine Learning.

7. The support vector machine under test. David Meyera, FriedrichLeisch , Kurt Hornik. 1-2, 2003,

Neurocomputing, Vol. 55, pp. 169-186.

8. New Support Vector Algorithms. B. Scholkopf, A. J. Smola, R. C. Williamson, P. L. Bartlett. 12,

2000, Neural Computation, pp. 1207-1245.

9. A neural network approach to robust shape classification. Lalit Gupta, Mohammad R. Sayeh, Ravi

Tammana. 8, 1989, Pattern Recognition, Vol. 23, pp. 563-568.

10. Detecting Wires in the Canopy of Grapevines using Neural Networks. Joshua McCulloch, Richard

Green. Wellington : s.n., 2013. Image and Vision Computing New Zealand.

11. Multiscale Edge Detection and Fiber Enhancement Using Differences of Oriented Means. Meirac

Galun, Ronen Basri, Achi Brandt. Rio de Janeiro : s.n., 2007. International Conference on Computer

Vision.

12. Flowers, Simon. Low-level Image Segmentation for a Vine Imaging Robot. Canterbury : University

of Canterbury, 2012.

13. Bayer, Bryce E. Color Imaging Array. 555,477 United States of America, 5 March 1975.

14. Demosaicing Algorithms for Digital Cameras. [Online] ImageVal. [Cited: 1 7 2013.]

http://www.imageval.com/public/Products/ISET/ISET_Manual/Demosaicing.htm.

15. Quantitative analysis of skeletonisation algorithms for modelling of branches. Tom Botterill, Will

Gittoes, Richard Green. Auckland : s.n., 2011. Image and Vision Computing New Zealand.

16. Reconstructing partially visible models using stereo vision , structured light , and the g2o

framework. Tom Botterill, Richard Green, Steven Mills. Dunedin : s.n., 2012. IVCNZ' 12. pp. 370-375.

33

17. A decision-theoretic formulation for sparse stereo correspondence problems. Tom Botterill,

Richard Green. Sydney : s.n., 2013. International Conference on Computer Vision.

18. Support Vector Machines. Scikit Learn. [Online] 2010. [Cited: 9 November 2013.] http://scikit-

learn.org/stable/modules/svm.html.

19. Deng, Kan. OMEGA: On-line Memory Based General Purpose System Classifier. Pittsburgh :

Carnegie Mellon University, 1998, pp. 117-132.

20. A Direct Method of Nonparametric Measurement Selection. Whitney, A. Wayne. 9, 2006,

Transactions on Computers, Vols. C-20, pp. 1100-1103.

21. Evaluation of simple performance measures for tuning SVM hyperparameters. Kaibo Duan, S.

Sathiya Keerthi, Aun Neow Poo. 51, 2003, Neurocomputing, pp. 41-59.

22. Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin. A Practical Guide to Support Vector

Classification. Taipei : National Taiwan University, 2003.

Appendices

Example of Training Images

Figure 26: Colour, Marked, and Bayer versions of training data

35

Video Demonstration

http://www.youtube.com/watch?v=_yFVTFVCrWI

http://www.youtube.com/watch?v=_yFVTFVCrWI

	Abstract
	Contents
	Introduction
	Background and Related Work
	Motivation
	Vine Pruning Robot
	Related Research
	Detecting High Tension Wires
	Detecting Wires in the Vineyard
	Road Lane Detection

	Classification
	Support Vector Machines
	Neural Networks
	Heuristic

	Input Data
	Bayer Images
	Colour Images
	Background Subtracted Images
	Red Green Blue Colour Space
	Hue Saturation Value Colour Space

	Fitting Wires
	Linear Regression with Least Squares
	RANSAC
	Hough Transform

	System Design
	System Input
	Bayer Images
	Marked Images

	Support Vector Machines
	Creating Vectors
	Vectors
	Features
	Trees
	Masks
	Feature Library
	Vectorisers

	Finding Examples
	Measuring Performance
	Marked Images
	Entire Image Classification
	10-Fold Cross Validation
	Performance Measures

	Finding the ideal feature set
	Add one in method
	Leave one out

	Finding the optimal SVM Hyper-parameters

	Results
	Discussion
	Hyper-Parameters
	Feature Selection
	Training Examples
	Overall Performance
	Classification Time
	Recall
	Precision

	Improving Classification Time

	Conclusion
	Future work

	Bibliography
	Appendices
	Example of Training Images
	Video Demonstration

