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Abstract 
An automated vine pruning robot is being developed to reduce the cost of labour in vineyards. This 

automated system requires an accurate model of the vine’s structure, including the locations of 

support wires, in order for the robot to make good decisions about where and how to prune the 

plant. In this project we have developed a system for accurately and robustly detecting pixels 

belonging to wires in Bayer Images taken by the robot of the vine’s canopy. Our system uses support 

vector machines for classifying wire and non-wire pixels, and a set of masks for optimally distributing 

training examples over an image. We have found an optimal subset of features for describing these 

examples and are able to achieve upwards of 90% precision with more than 20% recall. The system 

generates data ideal for wire fitting and use by the automated vine pruning robot. The techniques 

discussed could be generalised and used in other scenarios where selecting ideal example data from 

a large pool of potential examples, and finding optimal features to represent these examples is 

required.  
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Introduction 
Vineyards require a significant amount of human labour to operate and pruning can consume 30-

50% of the annual labour cost (1). In an attempt to reduce the burden of finding and training a 

workforce for this seasonal task, a team at the University of Canterbury is developing an automated 

vine pruning robot. The robot straddles the row of grapevines and will prune the plants using a 

computer controlled robotic arm. In order for the robot arm to be able to navigate the canopy of the 

grapevine and make good decisions on where to prune the vine, a comprehensive model containing 

the structure of the canopy needs to be created. This model needs to include the plant structure, 

post locations, and the wire positions. In this project we are specifically interested in accurately 

locating the wires in 2-Dimensional images of the canopy. Wire locations are found by first finding 

the pixels that represent wires in images captured by the robot. These wire pixels can then be used 

by the wire fitting system to find the wire locations. These wire locations are added to the canopy 

model for use by the rest of the automated vine pruning system. 

The current automated vine pruning system contains a subsystem for locating the wire locations, but 

it uses a heuristic approach and can fail under some conditions. A system is required which can 

robustly find pixels which represent wires under varying and more difficult conditions.  The wire 

detection system discussed focuses on finding the individual wire pixels for use by the existing wire 

fitting system.  
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Background and Related Work 

Motivation 
The goal of this project is to develop an effective robust system for extracting the wire locations in 

the canopy of the vineyard using images captured by a vine pruning robot. The wire locations need 

to be determined so an accurate model of the vine’s canopy can be constructed. The model is used 

by the robot in order to determine where on the plant pruning should occur and how to navigate the 

canopy to perform the cuts. Finding the accurate locations of the wires is crucial to ensure that the 

robot does not mistakenly cut one of the wires or become entangled in them. The wires in the 

vineyard support the weight of the vines and can be under high tension; cutting them could damage 

the plants or the robot arm making the cuts. The arm becoming entangled in the wires will almost 

certainly cause damage to the robot, resulting in a significant loss. The robot is being designed to 

automatically prune vines which use the Vertical Shoot Positioning (VSP) training system containing 

between five and seven wires (2); all of which need to be accurately located. 

Vine Pruning Robot 
The vine pruning robot is under heavy development by the University of Canterbury and several 

industry partners. It is being developed to automate the pruning process in vineyards which is 

currently entirely performed by manual labour. Vineyard pruning is seasonal work which requires a 

significant level of skill, and a sizable workforce needs to be obtained and trained each year to 

perform the task. Managers of vineyards are regularly forced to compromise on the skill of the 

acquired labourers in order to obtain enough staff to perform pruning during the optimal time 

window; this can lead to a sub-par level of pruning resulting in reduced crop yield and quality. This 

goal of the Vine Pruning Robot is to create and autonomous system capable of pruning to a level 

comparable to that of an expert veteran pruner, and could prune a significantly larger number of 

vines per day than its human counterpart.   

Related Research 

Detecting High Tension Wires 

Methods for detecting high tension suspended power-lines have been implemented in collision 

avoidance systems on board aircraft. The Passive Obstacle Detection System (PODS) (3) for Wire 

Detection developed by Boeing is able to detect suspended wires at ranges greater than 4.5 

kilometres using both visible and long wave infrared light. PODS uses a multistage pipeline to first 

remove noise from the image before slowly building up a model of wires in the image from primitive 

components. PODS first applies a ring median filter to remove any large scale structures from the 

image. The median filter has a radius of 5 pixels; wires are assumed to have a diameter of less than 

this. The wires generally have a lower contrast than other elements in the image and so a SUSAN 

filter is applied to create an image containing just the high contrast elements. This high contrast 

image can then be subtracted leaving only the lower contrast elements. The system then calculates 

the gradient phase operator using 2 convolution kernels; one for the horizontal direction and the 

other for the vertical. This results in an image containing small scale gradient changes across the 

image. The gradient along the top edge of the wire should be opposed to that of the lower edge (see 

Figure 1). By looking for pixels with neighbours with diametrically opposed gradient phases, 

potential wire segments can be found. 16 successive linear filters are then applied to the image to 

find the probability that a wire segment belongs to a wire based on its neighbouring pixels. Varying 
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thresholds are applied with each filter leaving only pixels with a strong likelihood of being part of a 

wire and rejecting segments which are disconnected.  

 

Figure 1: Gradient phases of the upper and lower edges of a wire 

The images captured by the vine pruning robot include the plant’s tendrils. When viewed in isolation 

these tendrils have many similarities to the wires in the image.  PODS does not need to deal with 

such a similar objects to those that it is attempting to be classify in its images. Our system needs to 

be able to robustly classify the wires, while rejecting the wire-like tendrils.  

Detecting Wires in the Vineyard 

The previous system implemented on the vine pruning robot uses a heuristic based approach for 

detecting wires. This system, along with many other computer vision based systems on the robot, 

works with background subtracted images. These background subtracted images work by calculating 

the probability that a given pixel is part of the foreground using Bayes formula.  The system looks at 

each pixel individually and compares it to an image of the background. By looking for differences 

between these images the probability that a given pixel is part of the foreground can be calculated. 

The current wire detection system assumes that wires will be between one and six pixels in thickness 

and approximately horizontal. It works by looking at the pixels above and below the pixel of interest, 

if they are part of the background while the pixel of interest is part of the foreground, then it is likely 

that the pixel is part of a wire. Long thin canes can meet this criterion, so the system also looks at 

the colour of the pixel; wires are generally grey while vines are browner. The system then sweeps 

across the image looking for pixels that are co-linear and forms wire segments from them. The 

system then connects these wire segments to identify the wires. The final sweep and co-linear 

search removes almost all false positives and the main concern with the system is its lack of 

sensitivity under some conditions. Sometimes the wires are not well represented in the background 

subtracted images or even non-existent. 

Road Lane Detection 

Detecting lane markings on roads bears some similarity to wire detection. Lipski et al. have 

developed a fast and robust method for detecting lane markings using multiple cameras and parallel 

processing on Graphical Processing Units (GPU) (4). Their method takes four images of different view 

perspectives and creates a large mosaic image for processing. The lane model is reconstructed from 

a set of lane segments provided by the feature detection system. Feature detection is processed in 

parallel on the GPU to reduce classification time. The feature detection algorithm works with eight 

by eight pixel sub regions from the large mosaic image. Each of these sub-regions undergoes a series 
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of tests in order to determine the likelihood that the given sub-region contains a lane segment. 

These tests include checking the distribution of colours and the shape of the pixels inside the 

segment. The lane segments created by this process can then be fitted into the lane model.  

The assumptions made by the lane detection system are somewhat analogous to those we can make 

when detecting wires. Lane detection needs to allow for obstructions hiding lanes from the cameras; 

our system will also need to allow for objects obscuring the wires from view. The lane detection 

system needs to allow for varying lighting conditions. The vine pruning robot provides its own light 

source so this is not an issue. However we do need to allow for varying colours of wire and plant 

structure, which if unaccounted for could be detrimental to the robustness of the system. 

Classification 

Support Vector Machines 

Support Vector Machines (SVMs) have been used by the vine pruning robot for recovering laser lines 

projected into the vines’ canopy. This structured light is used by the system for creating a 3-

dimensional model of the canopy structure. Botterill et al. achieved a 99% precision with 90% recall 

when detecting the structured light in the canopy (5). Achieving similar results would greatly benefit 

the wire detection system. However detecting a laser is generally simpler for a classifier than 

detecting wires due to the high contrast and difference in hue between the laser and the rest of the 

canopy. SVMs generally achieve similar results to other machine learning techniques such as Neural 

Networks and Random Forests (6) (7). SVMs work by attempting to find a splitting plane which 

divides the positive and negative examples (8). This plane can be linear or have a more complex 

shape to better match the examples. The training vectors can be plotted in n-dimensional space 

where n is the number of features that a vector has. A hyper-plane can then be found which splits 

the examples with the maximum separation. In instances where an ideal splitting plane cannot be 

found the vectors can be mapped into a higher dimensional space with the use of a kernel function; 

these higher dimensional spaces allow for more complex splitting planes to be found. The Gaussian 

Radial Basis Function (RBF) kernel can approximate a large number of smooth splitting surfaces 

allowing it to perform well in most cases. The complexity of the splitting plane found by the RBF 

kernel can be adjusted, a complex splitting plane runs the risk of over fitting, while less complex 

splitting plane may over simplify and not correctly describe the data. 

 

Figure 2: Example of 3 splitting planes. Both H2 and H3 successfully split the data set while H1 does not. [wikipedia.org] 

Neural Networks 

In earlier research, we used Neural Networks (NN) (9) for identifying wire locations in images of the 

grapevines (10). We used four NNs; one for each colour channel of the Bayer Image. The NNs were 
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trained on randomly selected positive and negative examples from one image of the vine. The 

output from the NNs was then passed through a threshold function which looked at neighbouring 

pixels. If there were more neighbouring wire pixels than the pre-set threshold, the pixel was 

classified as a wire. This threshold function greatly improved the precision by removing a large 

number of false positive. This system ultimately achieved a precision of 94% which would generally 

be good enough to accurately fit wire segments to. Half of the remaining false positives were caused 

by a laser line that was projected into the scene and could potentially be removed with further 

training of the networks. The major issue with NNs is the long time required for them to classify an 

image; taking 27 seconds for a 960 by 1280 pixel image. This could be reduced by intelligently testing 

pixels, for example based on whether neighbouring pixels had already been classified as wires. 

However NNs still require a large amount of computation to classify an entire image. 

Heuristic 

Applying heuristics to classification problems is generally computationally efficient and fast (11). 

There are many heuristics that could be used to identify potential wire segments (12), such as 

testing the colour, as wires tend to be a shade of grey, or shape, as wires are thin structures and 

usually close to horizontal. The existing system uses a scale invariant, shape based heuristic which is 

looking for thin horizontal structures against the background. The wires are generally between one 

and five pixels in diameter and can be extracted with a relatively high level of accuracy. False 

positives can be further removed by examining the colour of classified pixels, as wires are generally 

greyer than other structures in the image. While the heuristic based approach is computationally 

light compared to using machine learning techniques, it does have some pitfalls. The heuristics need 

to be programed into the system; if the environment is prone to change this can require that the 

system be regularly reprogrammed. A classifier based on machine learning techniques could be 

retrained using some current example images rather than requiring reprogramming. Heuristics can 

also be used alongside a dynamic system utilising machine learning techniques. Heuristics could be 

used to pre-process an image and identify candidate pixels that would then be checked by the 

classifier. This method of boosting could improve the computational efficiency of the system and 

remove objects that are easily extracted such as the blue backdrop; removing the requirement that 

the machine learning classifier discovers this relationship. 

Input Data 

Bayer Images 

Raw image data captured by the vine pruning robot is in the form of a Bayer Image. In most cameras 

today each pixel is only capable of capturing one colour; be it red, green, or blue. The colours of the 

pixels are generally laid out in the Bayer Pattern, developed by Bruce Bayer (13). In the Bayer 

Pattern every odd numbered row will alternate between green and blue pixels, while every even row 

alternates between red and green pixels. This pattern contains as many green pixels as blue and red 

pixels combined; this is to mimic the physiology of the human eye. In this raw data captured from 

the camera, each pixel contains a single value; the colour this value represents depends on the 

pixel’s absolute position in the image (see Figure 3 and Figure 4). 



 
 

 

Figure 3: Example of a Bayer Image. (Colours are used 
to show the colour represented by each pixel) 

[wikipedia.org] 

 

Figure 4: Example of a Bayer Image used by the system. 
A wire can be seen across the top of the image 

 

Colour Images 

The colour images used on the vine pruning robot are generated from the raw image data (see Bayer 

Images). The process of reconstructing the colour image from the raw image data is called 

demosaicing (14).  The demosaicing process finds the values for the two colours of a given pixel that 

it doesn’t contain, for example the red and blue values for a green pixel. These values can be found 

by bilinearly interpolating the colours of neighbouring pixels. For example, for a pixel that only 

contains a green value, its red value can be found by considering the two red pixels either above and 

below or to the left and right of the green pixel; the blue value would then be found using this same 

method. The process of reconstructing a full colour image by demosaicing a Bayer Image results in a 

lower effective resolution (see Figure 5) than what would be achieved by using three separate image 

sensors; one for each colour. 

 

Figure 5: Difference in effective resolution caused by demosaicing [wikipedia.org] 

Background Subtracted Images 

The background subtracted images contain the probabilities that a given pixel belongs in the 

foreground. Hence they in theory have had the background subtracted from them. These 

background subtracted images are generated by the existing system used on the vine pruning robot 

(15) (16). These images (see Figure 6) are used by various subsystems on the robot such as the cane 

reconstruction, and wire extraction systems. These images are made by comparing the current 

frame with an original frame which did not contain the canopy (vines, posts, wires, etc.).  The 

probability that a given pixel is part of the foreground can then be calculated by comparing its value 

in the current frame with that in the original frame. The background subtracted image does not 

contain any colour information; each pixel contains a single value representing the probability that is 

in the foreground of the image. 
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Figure 6: Background Subtracted Probability Image 

Red Green Blue Colour Space 

The Red Green Blue (RGB) colour space represents colours using the three colourants red, green, 

and blue. Three values are used to represent a colour in the RGB colour space; one value for each 

colour intensity. The RGB colour space is a convenient representation for colour information; this is 

due to the design of image source. The camera’s sensor uses three different sets of sensors, as 

discussed in the Bayer Images section and is sensitive to one of the three colours Red, Green, and 

Blue. This mapping from sensor data to RGB colour space does require the lossy demosaicing 

process discussed in the Colour Images section. In Figure 7 we can see an example of the 3 individual 

colour channels of an image used by the vine pruning robot. The wires generally have a grey colour 

which results in them having somewhat equal intensity values in each of the three colour channels.  

   

Figure 7: Examples of the Red, Green, and Blue colour channels 

Hue Saturation Value Colour Space 

Hue Saturation Value (HSV) is a cylindrical coordinate representation of the points in the RGB colour 

model.  The Hue value is used to select a colour by referencing a position around a colour wheel. The 

saturation value represents how saturated the selected hue is. The “Value” value is used to 

represent the brightness of the selected colour; where a small value would result in black and a large 

value would be the original colour. The HSV colour space is of particular interest because it separates 

the colour and intensity values; this was not the case in the RGB colour space.  In Figure 8 we can see 

each of the three HSV values along with the original full colour image. We can see the Hue image 

allows us to easily isolate the plant structure from the background, but does not contain a strong 
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representation of the wires; however in the Saturation image the wires are much more prominent. 

By combining the information in each of these channels we could envisage a system which could 

progressively remove parts of the image, first the plant structure, then the background, until only 

the wires remained. The difficulty in a system like this is determining the threshold value for 

describing each of the objects in the image; for example in the saturation image the wires appear 

visible, but a change in lighting or wire reflectivity could change how the wires are represented or 

even completely remove them from the image.  

 

Figure 8: Original RGB Image split into separate Hue, Saturation, and Value channels 

Fitting Wires 
The vine pruning robot already has a robust method for fitting wires to the classified data based on 

the least squares algorithm (17). We however briefly cover several methods for fitting the wires for 

completeness. 

Linear Regression with Least Squares 

Linear Regression using Least Squares is a fast and computational efficient method for calculating a 

straight line through a set of data points. The method first takes the mean of the data set which the 

final model is expected to intercept. This then constrains the problem, as only the slope of the line 

now needs to be found. The slope can be found by measuring the sum of the squared distances the 

X parameter of each data point varies from the means, and then repeated for the Y parameter. This 

method of fitting a line to the data points requires that only one wire exists in the data set.  Linear 

regression is also affected by outliers.  

RANSAC 

RANSAC or Random Sample Consensus is an iterative method of fitting a mathematical model to a 

data set which contains outliers. RANSAC operates by first selecting a random subset of examples 

from the data set. A model is then fitted to these examples. Every example that is not part of the 

initial random subset is then tested against the model, if the example fits the model it is added to 

the consensus set. This process is repeated, each time with a different initial subset of examples. For 

each of the iterations, the size of the consensus set produced by the model is recorded. The model 

with the largest consensus set is considered to best represent the data.  

Hough Transform 

The Hough Transform is a technique used for feature extraction based on a voting procedure. For 

each data point presented to the algorithm, all possible model parameter sets which fit are given a 

vote. After all of the data points in the data set have been processed, the parameter set with the 

greatest number of votes is considered to best fit the data set. Figure 9 shows a set of potential wire 
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segments that need to have wires fitted to them. Note: there are a significant number of outliers in 

this data set. In Figure 10 we can see each of the data points plotted in parameter space. For each 

data point every possible line that intercepts is considered. The parameters of these lines are plotted 

in parameter space; the angle of the line is mapped onto the x-axis and the distance that line is from 

the centre of the images is mapped onto the y-axis.  With this method of mapping each data point 

produces a series of votes which appear sinusoidal. Parameter sets which more commonly match 

the data, gain more votes and create a local maximums. These local maximum can then be projected 

as lines back into the data set space; see the yellow lines in Figure 9. In this case the outliers in the 

data set have not affected the fitting process because there were enough inliers to disregard them. 

The Hough Transform performs well for detecting multiple lines from the same data set. By taking 

the number of wires expected in the data set which is known, we look for that number of local 

maxima in the parameter space.   

 

Figure 9: Data space with two lines re-projected from 
parameter space 

 

 

Figure 10: Parameter Space with Theta mapped onto 
the X axis and Radius onto the Y axis 
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System Design 

System Input 

Bayer Images 

The system feeds Bayer Images into the classifier. Bayer Images offer several advantages over 

traditional colour Images. The colour images (see Colour Images) provided by the system contain 

three values for each pixel; one for each colour. While the Bayer Images only contain one value (see 

Bayer Images), it contains at least as much information as a colour image, as the colour image is 

created from it using a demosaicing algorithm (see Figure 11). We opted to base our system around 

these images because the Bayer Image offers raw data untouched by post-processing such as 

demosaicing. Bayer Images require fewer values to be fed into the classifier used to identify wire 

pixels as each pixel only has one value. By reducing the amount of data fed to the classifier we can 

reduce the risk of over fitting. The Bayer Image does however require four classifiers to be created; 

one for each of the four colour locations (see Figure 13).  

 

Figure 11: Comparison between Bayer and colour images containing the same segment of wire 

Marked Images 

Each Bayer image provided to the system was accompanied by a corresponding marked image. The 

marked image was created by humans and was considered to be the ground truth. The marked 

images contained several colour masks which isolate different regions to then be used during the 

example creation phase. The wires were marked in the image with white lines with a width of 1 

pixel. This one pixel width line did not mask out the entire wire because the wire generally has a 

diameter of 3-5 pixels. To completely mask out the wire, a border of 2 red pixels was applied to the 

white line. When the system is looking for positive examples it references this marked image looking 

for white pixels. Any pixel that is not white or red in the marked image is a candidate negative pixel. 

To control the distribution of negative examples we added two additional masks to the image. The 

first mask was magenta and was used to mask out posts and other support structures (see Figure 

12). The second mask was blue and was applied to the backdrop in the frames provided by the 

robot. By adding these two additional masks we can choose the distribution of negative examples 

that fall on the backdrop, posts, and the vine. Being able to adjust these distributions is important 

because the backdrop alone takes up more than 80% of the image by area while the vine structure is 

the most complex; requiring significantly more training examples to identify. If we were unable to 

adjust these distributions we would have a large number of examples available to learn the simple 

structure of the background and a small remaining set of examples to learn the complex structure of 

the vine. In our default distribution, 10% negative examples fell on the backdrop, 10% on the posts 

and support structure, and the remaining 80% fell on the vine. 
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Figure 12: Bayer and corresponding marked image 

Support Vector Machines 
The system uses four SVMs, each bound to a separate colour channel in the Bayer Image. A separate 

SVM is required for each channel because the vector creation process is based on the layout of the 

neighbouring pixels of the pixel being classified, for example depending on what channel is being 

classified the pixel to the left of the pixel of interest will represent a different colour. The solution we 

used to deal with the data, being location dependent, was to use separate SVMs for each channel. 

This required the SVMs to be individually trained and tested as well as each having their own set of 

features they used during the creation of vectors. Figure 13 shows the relative position of the four 

SVMs. 

 

Figure 13: Relative layout of the four SVMs 

Creating Vectors 

Vectors 

A vector is an n-dimensional set of values representing some object. Each vector is constructed by 

extracting a set of features which describe the object in question. Many algorithms in machine 

learning and pattern recognition require information to be provided in this form. Each feature inside 

the vector may represent a single attribute about the object such as a pixel’s brightness, or a 

combination of attributes such as the mean brightness of all the pixels in a given location. A vector 

can have a known class, such as wire or non-wire, or its class can be unknown in which case the 

vector is considered un-labelled. When a vector has a known class it can be used for training the 

classifier to recognise patterns and associations. Once a classifier has been trained it can then be 

feed un-labelled data to classify. Because the training data used by the classifier needs to be labelled 

R G1

G2 B
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we need to find a way to identify the class of the vectors. In our work the training data was extracted 

from images for which the wire locations had been identified by humans.  

Features 

In order for the classifier to identify whether a given pixel is part of a wire, we needed to develop a 

system to create vectors that are able to describe the pixels. In the Bayer Image each pixel contains a 

single byte on information which may represent one of three colours depending on its position in 

the image. If we used this single byte to create the corresponding vector, the vector would only 

contain one element and not enough information to identify the class of the pixel. In order for a 

pixel to be classified we need to look at the attributes of neighbouring pixels. In this project we 

consider all pixels in an eight by eight grid centred on the pixel of interest (see Figure 14) when 

creating the describing vector. The 64 pixels inside this region of interest could be each treated as a 

single feature, or combined to create a lower dimensional feature.  

 

Figure 14: Neighbouring pixels inside the red region are used for creating the vector for the blue pixel of interest. 

Creating a new feature for each neighbouring pixel passes more information to the classifier than a 

smaller set of features built by combining pixels, however there are reasons why combining features 

is preferable. Firstly by building and combining features we reduce the chances of the classifier over 

fitting. Building and combining features abstracts away smaller details and can leave bigger more 

important structures for the classifier to learn from. The second reason for combining features is 

that it can reduce the total number of features in each vector. The more features that are used 

during classification, the more computationally expensive each classification is. Also by reducing the 

number of features in each vector the classifier can require less training examples before it reaches 

an acceptable level of performance.   

Trees   

In order to generate features we needed to develop a system which could describe how and which 

individual pixels would be combined. We wanted a system that would be robust and could be tuned 

using meta-learning techniques such as genetic algorithms or an exhaustive search. One such 

abstract data structure that was investigated was the tree. Trees could pull from a library of base 

features such as rows, columns, individual pixels, and regions of pixels, and describe how to combine 

them using arithmetic operators such as addition and subtraction (see Equation 1), or logical 

operators such as, ‘and’, ‘not’, and ‘or’.  
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Equation 1: Example of feature created from a tree representation 

        (                 ( ))     ( ) 

Trees have the advantage of having large amounts of research exploring their application in 

describing solutions, such as linear regression and decision trees. Trees can have many techniques 

applied to optimising them such as linear regression and pruning. The major downside to using a 

tree representation for describing features is that they can be slow to traverse and with the large 

amount of searching and classification required in this project, complex trees would make it 

computationally infeasible to obtain large datasets for analysis in a tangible amount of time.  

Masks 

Masks are conceptually less complex than tree structures and ultimately cannot be described as 

complex relationships. The masks used in this experiment were eight by eight 2-dimenisonal arrays 

that masked out individual pixels. The mean value of the pixels that remained after the masking 

process would then be used as a feature.  While masks may not be able to describe as complex 

relationships as trees can, they do still provide a large possible feature space, and do have the 

massive advantage of computational efficiency. These masks can easily be represented as a 1-

dimensional bit string allowing for genetic algorithms to be easily applied should we wish to perform 

a more extensive features search. 

Feature Library 

To reduce the search space of possible features to a tractable size we opted to create a feature 

library and search for an optimal subset of features from within it. This feature library contained 96 

features from the 64 neighbouring pixels. 64 of the 96 features were direct representations of the 64 

individual pixels; the remaining 32 features were created by taking the mean value over the pixels in 

each row and column. Because each row and column in the Bayer Images contains two colour 

channels, two features were created for each one. In this implementation one feature might contain 

the mean blue value for a column, while the other would contain the mean green; preventing the 

colour channels from being combined. Early experimentation showed that merging the colour 

channels resulted in a significant decrease in the performance of the classifier.  

Vectorisers 

The vectorisers are an abstraction used to convert the 64 neighbouring pixels into a vector which 

could then be used during the training or classification processes. During the development phase we 

created multiple vectorisers. These vectorisers allowed us to test the effectiveness of different 

methods of feature creation such as taking the mean value of a set of pixels. The final vectoriser was 

implemented using the previously discussed masks. When provided with raw data from the Bayer 

Image and a set of masks, the vectoriser would iteratively apply each mask and compute the mean 

pixel value. Each mean pixel value would be added to the final vector used as a feature to describe 

the pixel currently being classified. 

Finding Examples 
The data creation pipeline (DCP) creates examples used for training and testing the classifier. Each 

example produced by the DCP contains two parts, the first is the vector which contains the features 

describing the example, and the second is the class of the example; whether it is positive or 

negative. During the development of the system we created a revised version of the DCP; however 
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both versions maintained many similarities. Both versions used a previously marked image (see 

Figure 12) to identify the different regions of the image, and a Bayer Image to extract the raw data 

from. Both versions also used a vectoriser to convert the 64 pixels into a corresponding vector and 

could shuffle the data if it was required; such as with N-fold cross validation techniques.  

Two subroutines were used by both versions of the DCP for finding a given number of wire examples 

and non-wire examples. These subroutines randomly find the locations of wire and non-wire 

examples by referencing the provided marked image. However the way the two DCP 

implementations used these subroutines differed. The initial implementation was provided with two 

numbers; the quantity of positive and negative examples to be found by the subroutines (see Figure 

15). The revised implementation of the DCP removed these two numbers from the inputs and 

replaced them with two sets of examples; the positive and negative (see Figure 16). These two 

subroutines were removed from the DCP to allow for more control of the systems behaviour. The 

initial implementation would randomly find new example locations each time it was run. This 

resulted in additional variance, for example when trying to measure the effect of making changes to 

the vectoriser. By moving the subroutines out of the DCP, we are able to use the same example 

locations but use different vectorisers and thereby different vectors describing the same examples.  

 

Figure 15: Initial Data Creation Pipeline 

 

Figure 16: Revised Data Creation Pipeline 

Measuring Performance 

Marked Images 

In order to measure the performance of the classifier we need to first determine what is and is not a 

correct classification. When we trained the system we only used positive examples that fell on the 

white pixels, however when it comes to measuring the performance of the classifier, any pixel that 

falls on the red border (see Figure 17) of the wire will also be counted as a correct classification. 

Using this method we can avoid the issues caused by the wire not being a constant width across a 

given frame and between multiple frames. 
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Figure 17: Marked wires with boundary guard area 

Entire Image Classification 

Initially we measured the performance of the system by classifying an entire image. This approach 

seemed logical because it is the task that the classifier would be expected to perform once it was 

deployed. However this method of analysis did have two significant drawbacks. Firstly the time 

taken to classify an entire image was about 4 seconds which made it computationally infeasible to 

run large experiments, for example when performing feature searches which have large search 

spaces. The second issue is that this method had a lot of variability between classification attempts 

making the process of fine tuning parameters difficult. 

10-Fold Cross Validation 

In order to run larger more accurate experiments it became apparent that we needed a new method 

to gauge the performance of the classifier. We opted for a K-fold cross-validation technique, 

specifically 10-fold which is a common approach to measuring the performance of classifiers. In K-

fold cross-validation the samples are shuffled and split into k partitions of equal size. One of these k 

partitions is then used for testing the classifier while the remaining k-1 partitions are used to train 

the classifiers performance. This process is repeated k times with each fold being used once for 

validation. The samples are shuffled to ensure that each fold has approximately the same 

distribution of positive and negative examples. 

We found that 10-fold greatly reduced the amount of variability between independent experiments 

when compared with the entire image classification method of measuring performance. By only 

using 10,000 examples in the 10-fold cross-validation, instead of the 1.2 million in the classification 

of the entire image, we dramatically reduced the running time required. 

Performance Measures 

We can directly measure the number of true positive, true negative, false positive and false negative 

classifications made by the classifier. From these four values we can then create more useful 

performance measures such as precision and recall. Initially we used the precision of the classifier to 

gauge its performance. However as we tuned the classifier in an effort to push the precision higher, 

we saw a dramatic drop-off in the overall recall of the classifier. If the classifier is achieving 100% 

precision but only classifying a few 10s of pixels as wires, we will be unable to fit wires to the points 

and the data will be effectively useless. 
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In order to maintain an acceptable recall level while driving up the precision, a performance 

measure that accounted for both the precision and recall of the classifier was required. The F-score 

is a commonly used measure of accuracy that meets these requirements. The F-Score is essentially a 

weighted average between precision and recall as defined in Equation 2. From the F-Score 

distribution in Table 1 we can see that the F-Score is low when either the precision or recall is low; 

larger F-Scores are only achieved when both the precision and recall values are large.  

Equation 2: F-Score definition 

         
                

               
 

Table 1: Resultant F-Score values for various precision and recall values 

 

Finding the ideal feature set 
Finding the ideal set of features to be used for vector creation is crucial to optimising both the 

performance and classification time required by the classifier (18). Each additional feature used by 

the classifier increases the amount of time required to classify the example. Having redundant 

additional features also runs the risk of the classifier over fitting the training data. An example often 

used to describe this is the diagnoses classifier. If a classifier is fed a set of parameters about a 

patient in order to diagnose the patient’s illness, we wouldn’t expect the patient’s ID number to be 

any help in the diagnoses process, however if there is not enough training examples then the 

classifier may falsely identify a pattern in the patient ID numbers. By reducing the number of 

features fed to the classifier we can reduce any redundant data being fed to the classifier (19). 

We used two methods for finding the ideal feature sets for each support vector machine. Even with 

a feature library of only 96 features, there is a computationally infeasible number of ways of 

selecting a subset of features. In order to select a near optimal subset of features we used two 

greedy algorithms, Add one in and Leave one out. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.00 0.10 0.13 0.15 0.16 0.17 0.17 0.18 0.18 0.18 0.18

0.2 0.00 0.13 0.20 0.24 0.27 0.29 0.30 0.31 0.32 0.33 0.33

0.3 0.00 0.15 0.24 0.30 0.34 0.38 0.40 0.42 0.44 0.45 0.46

0.4 0.00 0.16 0.27 0.34 0.40 0.44 0.48 0.51 0.53 0.55 0.57

0.5 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.67

0.6 0.00 0.17 0.30 0.40 0.48 0.55 0.60 0.65 0.69 0.72 0.75

0.7 0.00 0.18 0.31 0.42 0.51 0.58 0.65 0.70 0.75 0.79 0.82

0.8 0.00 0.18 0.32 0.44 0.53 0.62 0.69 0.75 0.80 0.85 0.89

0.9 0.00 0.18 0.33 0.45 0.55 0.64 0.72 0.79 0.85 0.90 0.95

1 0.00 0.18 0.33 0.46 0.57 0.67 0.75 0.82 0.89 0.95 1.00

Precision

R
e
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ll
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Add one in method 

The Add one in algorithm is a simple method of finding a small set of good features. Given the 

current set of features, individually test each of the remaining features with the current feature set. 

Select the feature that performed best with the current feature set and add it to the current feature 

set. This process is continued until the desired number of features has been selected, or the 

performance of the classifier has stopped increasing.  

There is one significant draw back to the add one in algorithm and that is because no matter which 

features you select, the classifier cannot make any correct positive classifications when it has very 

few features. When the classifier is not making any positive classifications there is no way of 

distinguishing the difference in performance of various subsets of features. To allow the classifier to 

make some positive classifications we seed the algorithm with a small set of features which have 

performed well during the development phase.  

Leave one out 

The leave one out method is essentially the reverse of the Add one in method (20). It works by 

seeding the current feature set with all features. Then individually, each feature is tested to see 

what effect removing it has on the classifier’s performance. The feature which has the least negative 

impact or most positive impact on the classifier’s performance is then removed from the current 

feature set and the process is repeated. This approach has the advantage of not requiring a subset of 

features to first be selected by another means, removing the bias which is present in the Add one in 

method. However when a large number of features are present in the current feature set, removing 

one feature has a very small effect of the performance of the classifier. Therefore it is important to 

have an accurate way of measuring this performance. The entire image classification method did not 

achieve the required level of accuracy and it was not until we began using the 10-fold cross-

validation technique that the leave one out method became feasible. 

Finding the optimal SVM Hyper-parameters 
The classifier used for this project was a support vector machine with a Radial Bases Function (RBF) 

kernel. The RBF kernel is used to map the features into a higher dimensional space where a splitting 

plane can be found. The RBF kernel has two hyper-parameters, C and Gamma, which need to be 

correctly selected in order to gain the optimal performance from the classifier (21). The C hyper-

parameter is used to define the relationship between misclassifying training examples and the 

simplicity of the splitting plane. A high C value will result in a complex splitting plane and more of the 

training examples being correctly classified, while also risking over-fitting the classifier to the data. A 

low C value will result in a simple splitting plane, while potentially misclassifying some of the training 

data; this simple splitting plane may be too simplistic and not correctly describe the larger scale 

relationships in the data. The Gamma value used by the RBF kernel defines the region of influence of 

each training example. Small values of Gamma result in a small region of influence and large value in 

a large region of influence.  

We used a 2-dimensional grid-search to find the optimal C and Gamma values for the SVMs (22). We 

searched for a C value between 2-5 and 215, and for a Gamma value between 2-10 and 210. In a grid 

search the columns represent one variable and the rows represent the other. In this experiment the 

columns represented the Gamma values from 2-10 to 210 and the rows represented the C values from 

2-5 to 215. The search algorithm then iterates of the grid and stores the classifiers performance for 
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the given set of parameters in their corresponding cell in the grid. A gradient descent method for 

finding the optimal set of values may be more computationally efficient; however a gradient descent 

algorithm can become trapped in local minima and are not easily parallelised. Our grid search 

algorithm recorded precision, recall, and F-Score values of the classifier.  Alternatively the grid 

search can be performed using the empirical classification error as a performance measure.  
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Results 
Table 2: Precision values from Hyper-Parameters Grid Search 

 

In Table 2 we can see the precision values for each set of hyper-parameters produced by the grid 

search. Cells coloured red have the lowest precision values, yellow cells have a higher precision value 

and green cells have the highest precision. 

Table 3: Recall values from Hyper-Parameters Grid Search 

 

In Table 3 we can see the recall values for each set of hyper-parameters found by the grid search. 

The colouring scheme is the same used in Table 2.  

 

 

 

 

 

 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

-4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .48 .25

-3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .92 .91 .92 .96

-2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .99 .90 .89 .88 .88 .90

-1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .97 .89 .88 .87 .86 .86 .88

0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .25 .93 .88 .87 .86 .85 .85 .86 .88

1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .25 .93 .89 .87 .86 .85 .85 .85 .86 .88

2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .67 .92 .88 .86 .85 .85 .84 .85 .85 .86 .89

3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .67 .92 .88 .85 .85 .84 .84 .84 .84 .85 .87 .89

4 .00 .00 .00 .00 .00 .00 .00 .00 .67 .91 .88 .85 .84 .84 .84 .84 .84 .84 .85 .87 .89

5 .00 .00 .00 .00 .00 .00 .00 .67 .91 .88 .84 .83 .83 .83 .83 .83 .83 .84 .85 .87 .89

6 .00 .00 .00 .00 .00 .00 .63 .91 .88 .84 .83 .83 .83 .83 .83 .83 .83 .83 .85 .87 .89

7 .00 .00 .00 .00 .00 .63 .91 .88 .84 .82 .82 .83 .83 .82 .82 .81 .81 .82 .84 .87 .89

8 .00 .00 .00 .00 .63 .91 .88 .84 .82 .82 .82 .82 .82 .78 .79 .76 .79 .81 .84 .87 .89

9 .00 .00 .00 .63 .91 .88 .84 .82 .82 .82 .81 .80 .75 .66 .66 .70 .78 .81 .84 .87 .89

10 .00 .00 .63 .91 .88 .84 .82 .82 .82 .82 .79 .60 .47 .45 .60 .68 .78 .81 .84 .87 .89

11 .00 .63 .91 .88 .84 .82 .82 .82 .81 .67 .47 .39 .47 .43 .58 .68 .78 .81 .84 .87 .89

12 .63 .91 .88 .84 .82 .82 .81 .81 .63 .45 .41 .33 .36 .44 .58 .68 .78 .81 .84 .87 .89

13 .91 .88 .84 .82 .82 .81 .79 .64 .55 .39 .37 .36 .36 .44 .58 .68 .78 .81 .84 .87 .89

14 .88 .84 .82 .82 .81 .81 .61 .42 .32 .27 .37 .37 .36 .44 .58 .68 .78 .81 .84 .87 .89

15 .84 .82 .82 .81 .81 .54 .44 .24 .24 .25 .38 .37 .36 .44 .58 .68 .78 .81 .84 .87 .89

Gamma Exponent
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n
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-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

-4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

-3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .06 .20 .21 .10

-2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .15 .41 .53 .53 .40

-1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .19 .47 .62 .67 .65 .56

0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .19 .48 .64 .73 .74 .71 .65

1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .18 .46 .62 .74 .79 .78 .74 .67

2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .17 .43 .60 .73 .80 .82 .79 .74 .67

3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .16 .41 .57 .70 .78 .82 .82 .79 .73 .67

4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .15 .39 .55 .67 .76 .82 .83 .82 .78 .73 .66

5 .00 .00 .00 .00 .00 .00 .00 .00 .02 .15 .39 .53 .64 .73 .80 .83 .83 .81 .77 .73 .66

6 .00 .00 .00 .00 .00 .00 .00 .02 .15 .38 .52 .62 .71 .78 .82 .83 .82 .79 .77 .72 .66

7 .00 .00 .00 .00 .00 .00 .02 .14 .38 .51 .60 .68 .76 .81 .83 .82 .80 .78 .76 .72 .66

8 .00 .00 .00 .00 .00 .02 .14 .37 .51 .59 .67 .73 .79 .81 .81 .79 .78 .78 .76 .72 .66

9 .00 .00 .00 .00 .02 .14 .37 .50 .59 .66 .72 .77 .76 .74 .74 .75 .77 .77 .76 .72 .66

10 .00 .00 .00 .02 .14 .37 .50 .58 .65 .71 .74 .71 .68 .66 .70 .74 .77 .77 .76 .72 .66

11 .00 .00 .02 .14 .37 .50 .58 .65 .70 .72 .64 .56 .59 .63 .71 .74 .77 .77 .76 .72 .66

12 .00 .02 .14 .37 .50 .58 .64 .70 .69 .64 .50 .56 .56 .62 .71 .74 .77 .77 .76 .72 .66

13 .02 .14 .37 .50 .58 .64 .69 .68 .56 .52 .46 .56 .56 .62 .71 .74 .77 .77 .76 .72 .66

14 .14 .37 .50 .58 .64 .69 .69 .55 .44 .45 .45 .56 .56 .62 .71 .74 .77 .77 .76 .72 .66

15 .37 .50 .58 .64 .68 .66 .57 .46 .39 .42 .45 .56 .56 .62 .71 .74 .77 .77 .76 .72 .66
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Table 4: F-Score values from Hyper-Parameters Grid Search 

 

In Table 4 we can see the F-Score for each set of hyper-parameters calculated from the precision 

(Table 2) and recall (Table 3) values. We can see the precision values along the leading edge 

(diagonal green line from bottom left to top right) are the largest found, however when we compare 

these values with their corresponding recall values, we see that the classifier was achieving very low 

recall levels. Both the precision and recall values were lower in the bottom-middle area of the table. 

When we examine the F-Score values we can see that the optimal hyper-parameters were located in 

the middle right portion of the table. 

 

Figure 18: F-Score for the leave one out method for feature selection 

In Figure 18 we can see the F-Score of the four SVMs during the leave one out feature selection 

process. We can that the Blue and Green2 SVMs maintained a high level of performance until 

around 10 features remained where the performance rapidly dropped.  The Red and Green1 SVMs 

had a significantly lower performance than the other two SVMs; their performance started falling 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

-4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

-3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .11 .33 .34 .17

-2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .25 .56 .66 .66 .55

-1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .31 .61 .72 .75 .74 .68

0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .32 .62 .73 .79 .79 .78 .75

1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .30 .60 .72 .79 .82 .82 .80 .76

2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .28 .57 .70 .78 .82 .83 .82 .80 .76

3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .27 .55 .68 .76 .81 .83 .83 .82 .79 .76

4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .26 .54 .66 .74 .80 .83 .84 .83 .81 .79 .76

5 .00 .00 .00 .00 .00 .00 .00 .00 .03 .25 .53 .65 .72 .78 .82 .83 .83 .82 .81 .79 .76

6 .00 .00 .00 .00 .00 .00 .00 .03 .25 .52 .64 .71 .76 .80 .83 .83 .82 .81 .80 .79 .76

7 .00 .00 .00 .00 .00 .00 .03 .25 .52 .63 .70 .75 .79 .82 .82 .82 .81 .80 .80 .79 .76

8 .00 .00 .00 .00 .00 .03 .25 .52 .63 .69 .74 .78 .80 .79 .80 .77 .79 .79 .80 .79 .76

9 .00 .00 .00 .00 .03 .25 .52 .62 .68 .73 .76 .78 .76 .70 .70 .72 .77 .79 .80 .79 .76

10 .00 .00 .00 .03 .25 .52 .62 .68 .72 .76 .76 .65 .55 .54 .64 .71 .77 .79 .80 .79 .76

11 .00 .00 .03 .25 .52 .62 .68 .72 .75 .69 .54 .46 .52 .51 .64 .71 .77 .79 .80 .79 .76

12 .00 .03 .25 .52 .62 .68 .72 .75 .66 .53 .45 .41 .44 .52 .64 .71 .77 .79 .80 .79 .76

13 .03 .25 .52 .62 .68 .72 .74 .66 .56 .44 .41 .44 .44 .52 .64 .71 .77 .79 .80 .79 .76

14 .25 .52 .62 .68 .72 .75 .65 .47 .37 .33 .40 .44 .44 .52 .64 .71 .77 .79 .80 .79 .76

15 .52 .62 .68 .71 .74 .60 .49 .32 .30 .32 .41 .44 .44 .52 .64 .71 .77 .79 .80 .79 .76
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much sooner and gradually. The blue and green2 SVMs initially increased in performance as features 

are removed before plateauing and finally falling off.  

Table 5: Comparison of Standard Deviation between Whole Image Classification and 10-Fold validation over 20 trials 

 

In Table 5 we can see the Standard Deviation values for the two methods developed for measuring 

the performance of the SVMs. We can see that the standard deviation for the whole image 

classification method is approximately 2000 times greater than that of the 10-fold cross validation 

method. This experiment was performed in order to find the method for measuring the performance 

of the classifier with the least variability. 

  

Figure 19: Blue feature mask 

  

Figure 20: Green1 feature mask 

  

Figure 21: Red feature mask 

  

Figure 22: Green2 feature mask 

 

In Figures (Figure 19, Figure 20, Figure 21, Figure 22) we can see which pixels, relative to the pixel of 

interest, are being used for classification by each SVM. Red cells show the relative position of pixels 

which are not being used for classification, yellow are pixels that are being used once, and green are 

pixels being used twice. Pixels can be used twice if they are included in more than one feature such 

as a row, column, or individual pixel. It is possible for a pixel to be used three times, however once 

only 30 features remained, there were no instances where this occurred. In these images we can see 

some structure to the remaining features, although the structure does vary between the feature 

masks. All four feature masks have a somewhat uniform distribution vertically but vary substantially 

in their horizontal distribution.  

 

Whole Image Classification 10-Fold

Standard Deviation 0.019799 9.88E-06

1 0 0 1 0 0 0 1

1 0 0 1 1 1 0 0

0 0 1 1 0 0 0 1

0 0 1 1 1 0 0 1

2 0 2 1 1 0 1 1

0 0 1 1 1 0 0 0

1 1 0 2 0 0 1 1

0 0 1 1 1 0 0 0

1 2 1 2 0 1 0 2

1 1 2 0 0 0 0 0

1 1 1 0 1 0 1 0

2 0 1 1 0 0 0 1

0 1 0 1 0 1 0 1

1 1 1 0 0 0 0 0

0 1 0 1 0 2 0 1

1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

2 1 1 1 0 0 0 0

1 1 1 0 0 0 1 0

1 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0

2 1 0 1 0 1 0 0

0 2 0 1 0 1 1 2

1 2 0 2 0 1 0 1

0 0 1 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 1 1 1 1 0 0

1 0 1 0 1 0 0 0

1 0 1 2 0 1 0 0

0 0 1 0 1 0 0 0

1 1 2 1 2 0 1 0

0 0 1 1 1 0 1 0
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Table 6: Precision values from Examples Grid Search 

 

Table 7: Recall values from Examples Grid Search 

 

Table 8: F-Score values from Examples Grid Search 

 

Table 6 shows the relationship between the classifier’s precision and the amount of positive and 

negative training examples used. This relationship shows that having significantly more positive than 

negative, or negative than positive, results in the classifier achieving lower levels of performance. 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

1 .248 .242 .241 .237 .231 .229 .232 .226 .222 .212 .223 .215 .209 .205 .189 .219 .205 .204 .208 .195 .208 .204 .206 .208 .207

2 .198 .242 .237 .240 .240 .240 .236 .234 .232 .232 .230 .231 .230 .228 .229 .222 .217 .231 .216 .232 .226 .221 .221 .230 .220

3 .212 .247 .246 .245 .243 .239 .239 .238 .239 .236 .234 .233 .236 .230 .230 .231 .230 .228 .227 .233 .229 .229 .229 .229 .229

4 .220 .246 .245 .242 .245 .243 .241 .240 .241 .242 .238 .237 .235 .237 .235 .236 .236 .234 .233 .235 .234 .233 .233 .232 .235

5 .225 .246 .245 .247 .243 .244 .242 .242 .244 .242 .241 .242 .238 .240 .238 .236 .241 .236 .239 .237 .234 .237 .237 .236 .237

6 .230 .223 .245 .245 .245 .245 .243 .245 .243 .245 .240 .241 .240 .241 .240 .240 .241 .239 .241 .240 .239 .237 .239 .235 .236

7 .230 .215 .246 .246 .246 .246 .245 .245 .244 .244 .241 .242 .245 .241 .241 .240 .239 .241 .239 .241 .238 .240 .239 .236 .240

8 .235 .214 .246 .246 .247 .246 .245 .245 .244 .244 .245 .243 .244 .244 .243 .241 .240 .241 .240 .242 .239 .240 .243 .242 .240

9 .235 .218 .246 .247 .247 .245 .245 .246 .245 .245 .243 .245 .243 .242 .241 .242 .240 .242 .240 .243 .242 .242 .241 .240 .241

10 .237 .220 .245 .245 .247 .246 .245 .247 .247 .246 .244 .244 .245 .244 .243 .245 .243 .243 .240 .242 .242 .242 .240 .241 .241

11 .238 .222 .248 .248 .247 .247 .246 .247 .246 .246 .245 .244 .245 .244 .244 .245 .243 .244 .244 .243 .242 .242 .242 .244 .243

12 .239 .223 .247 .247 .248 .247 .246 .247 .246 .247 .245 .245 .245 .244 .244 .245 .245 .244 .244 .244 .244 .243 .244 .242 .243

13 .240 .228 .240 .249 .247 .248 .247 .247 .247 .247 .245 .246 .246 .245 .244 .245 .243 .244 .245 .243 .244 .244 .244 .243 .243

14 .240 .227 .225 .248 .247 .248 .248 .247 .247 .246 .247 .247 .245 .245 .245 .245 .245 .244 .244 .245 .245 .244 .244 .244 .245

15 .241 .228 .225 .249 .249 .248 .248 .247 .247 .247 .246 .246 .246 .246 .246 .246 .246 .244 .246 .245 .244 .245 .245 .244 .245

Non-Wire Examples (hundreds)
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1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

1 .177 .160 .141 .134 .154 .123 .144 .140 .131 .139 .145 .116 .120 .133 .109 .141 .125 .118 .116 .103 .105 .138 .124 .106 .126

2 .250 .179 .177 .181 .173 .158 .155 .166 .173 .171 .162 .157 .168 .156 .166 .153 .159 .178 .158 .166 .166 .157 .159 .166 .169

3 .249 .192 .187 .180 .180 .182 .179 .178 .182 .175 .172 .175 .173 .170 .178 .173 .171 .171 .175 .179 .169 .172 .178 .167 .178

4 .250 .208 .198 .192 .195 .191 .193 .192 .195 .190 .188 .188 .191 .188 .188 .185 .188 .188 .187 .181 .186 .189 .180 .185 .186

5 .249 .218 .205 .202 .199 .200 .198 .197 .198 .200 .197 .198 .194 .199 .194 .192 .193 .194 .190 .195 .190 .197 .188 .194 .194

6 .250 .237 .212 .205 .208 .209 .204 .202 .202 .206 .201 .206 .201 .203 .205 .203 .206 .204 .205 .207 .203 .201 .206 .203 .207

7 .250 .249 .220 .218 .210 .206 .212 .212 .211 .210 .213 .208 .206 .207 .207 .215 .212 .212 .204 .208 .211 .208 .206 .214 .212

8 .250 .250 .224 .216 .219 .216 .216 .216 .215 .213 .213 .213 .213 .215 .215 .216 .215 .214 .210 .211 .208 .215 .215 .215 .212

9 .250 .250 .228 .218 .225 .222 .217 .223 .217 .214 .220 .221 .217 .217 .217 .216 .220 .219 .214 .216 .219 .214 .217 .217 .219

10 .250 .250 .234 .223 .222 .225 .226 .220 .223 .221 .225 .223 .225 .224 .222 .222 .220 .218 .222 .223 .221 .222 .220 .217 .221

11 .250 .250 .238 .232 .227 .227 .227 .227 .225 .226 .224 .225 .225 .218 .226 .225 .227 .223 .224 .227 .222 .228 .225 .222 .225

12 .250 .250 .236 .234 .233 .228 .225 .231 .230 .226 .227 .229 .229 .228 .229 .224 .228 .229 .229 .226 .225 .226 .228 .229 .228

13 .250 .250 .245 .232 .230 .232 .230 .235 .231 .230 .230 .232 .231 .230 .232 .228 .226 .228 .229 .228 .227 .229 .229 .230 .229

14 .250 .250 .250 .236 .236 .234 .232 .235 .231 .233 .234 .234 .235 .234 .233 .230 .235 .232 .232 .231 .233 .233 .233 .235 .232

15 .250 .250 .250 .239 .235 .234 .237 .237 .236 .236 .236 .237 .234 .235 .237 .235 .235 .231 .233 .237 .235 .236 .235 .235 .232
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1 .207 .193 .178 .171 .185 .160 .177 .173 .165 .168 .176 .151 .152 .161 .138 .172 .155 .149 .149 .134 .140 .164 .155 .141 .157

2 .221 .206 .202 .206 .201 .190 .187 .194 .198 .197 .190 .187 .194 .185 .192 .181 .183 .201 .182 .193 .191 .183 .185 .193 .191

3 .229 .216 .213 .207 .207 .207 .205 .204 .206 .201 .198 .200 .199 .196 .200 .198 .196 .196 .197 .202 .194 .196 .200 .193 .200

4 .234 .226 .219 .214 .217 .214 .214 .213 .216 .213 .210 .210 .211 .210 .209 .207 .209 .208 .207 .204 .207 .209 .203 .206 .207

5 .237 .231 .223 .222 .219 .219 .218 .217 .219 .219 .217 .218 .214 .217 .213 .211 .214 .213 .212 .214 .210 .215 .209 .213 .213

6 .239 .230 .227 .223 .225 .225 .222 .221 .221 .224 .219 .222 .219 .220 .221 .220 .222 .220 .221 .222 .219 .217 .221 .218 .221

7 .240 .231 .232 .231 .227 .224 .227 .228 .227 .226 .226 .223 .224 .223 .223 .227 .225 .225 .220 .223 .223 .223 .221 .224 .225

8 .242 .230 .234 .230 .232 .230 .229 .230 .229 .227 .228 .227 .228 .228 .228 .228 .226 .226 .224 .225 .222 .227 .228 .228 .225

9 .242 .233 .237 .231 .236 .233 .230 .234 .230 .228 .231 .232 .229 .229 .228 .228 .230 .230 .226 .229 .230 .227 .228 .228 .229

10 .243 .234 .240 .234 .234 .235 .235 .233 .234 .233 .234 .233 .235 .234 .232 .233 .231 .230 .231 .232 .231 .232 .230 .228 .230

11 .244 .235 .243 .240 .237 .236 .236 .236 .235 .236 .234 .234 .234 .230 .234 .234 .235 .233 .234 .235 .232 .235 .233 .232 .233

12 .244 .235 .242 .240 .240 .237 .235 .238 .238 .236 .236 .237 .237 .236 .236 .234 .236 .236 .236 .235 .234 .234 .236 .235 .235

13 .245 .238 .242 .240 .238 .240 .238 .241 .239 .238 .238 .239 .238 .237 .238 .236 .235 .236 .237 .235 .235 .236 .236 .236 .236

14 .245 .238 .237 .242 .241 .241 .240 .241 .238 .239 .240 .240 .240 .240 .239 .237 .240 .238 .238 .238 .239 .238 .238 .239 .238

15 .245 .239 .236 .244 .242 .241 .242 .242 .241 .241 .241 .242 .240 .240 .242 .240 .240 .238 .239 .241 .239 .240 .240 .240 .238
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Table 7 shows that once the number of negative examples used by the classifier is greater than 500, 

further increasing it has a minimal effect on the recall ability of the classifier. Instead the recall 

ability is mostly dependent on the number of positive examples used for training. We can see that 

the classifier achieves an excellent level of recall with less than 500 negative examples. This also 

corresponds to a reduced level of precision seen in Table 6. The reduced number of negative training 

examples results in the classifier making a larger number of positive classifications; reducing the 

precision and increasing the recall. 

Table 8 shows the resulting F-Scores from the Example Search. We can see that the overall 

performance of the classifier is largely dependent on the number of positive examples, and less on 

the number of negative examples. The classifier achieves the highest F-Scores when the number of 

negative numbers is smaller. We are primarily interested in increasing the precision of the classifier 

and secondarily in the recall, while the F-Score evenly weights both of these values. For this reason 

we would be more inclined to look at the individual Recall and Precision results rather than the 

combined F-Score for analysing this experiment. 

Table 9: Comparison of classification with different feature sets 

 

In Table 9 we can see the overall performance of the classifier for different feature sets. We can see 

that when using the 20 best selected features the classifier achieved a mean precision of 0.88 and 

recall of 0.051 which is significantly lower than the three other feature sets, however it did perform 

the classification in less time; only 1.7 seconds. The Row/Col, All 96, and Raw features sets all 

achieved similar precision scores. The Row/Col feature set achieved a smaller recall value than using 

all 96 features and the raw feature set. The selected feature set consisted of 20 features, the 

Row/Col feature set consisted of 32 features, and feature set which contained all of the features in 

the features library had 96 total features. We can see that these 4 feature sets took a classification 

time proportional to the amount of features they used. The recall values achieved are smaller than 

what might be expected from a SVM, this is due in part to the method used for measuring 

performance; which is done pixel by pixel. Over an entire wire, having 5% of the pixels found is 

enough to classify the wire, if a high level of precision is achieved (see Figure 25 which achieved 7% 

recall).  

Precision Recall Time Precision Recall Time Precision Recall Time Precision Recall Time

Image 1 .891 .055 1.65 .950 .160 1.90 .952 .225 5.03 .951 .218 2.91

Image 2 .887 .053 1.72 .939 .137 1.98 .938 .208 5.08 .936 .196 3.01

Image 3 .930 .065 1.73 .956 .186 1.90 .934 .227 5.10 .939 .223 3.04

Image 4 .885 .043 1.69 .908 .124 1.90 .912 .190 5.01 .915 .183 3.01

Image 5 .878 .043 1.67 .919 .119 1.86 .926 .181 5.00 .927 .171 3.03

Image 6 .786 .043 1.69 .894 .128 1.88 .927 .187 5.02 .923 .178 3.04

Image 7 .909 .053 1.69 .943 .178 1.90 .933 .232 5.03 .938 .228 3.06

Image 8 .869 .052 1.67 .973 .159 1.87 .967 .223 5.00 .970 .217 3.01

Mean .879 .051 1.69 .935 .149 1.90 .936 .209 5.03 .937 .202 3.01

Selected Features Row/Col Features ALL Features Raw Features
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Figure 23: Time required by the vectorisation and classification portion of the system for varying numbers of features on 
a 960 by 1280 pixel image 

In Figure 23 we can clearly see the relationship between the number of features in a vector and the 

amount of time required for the classification to be completed. The relationship appears to be 

asymptotically linear. 

 

Figure 24: All 96 features (precision 0.94, recall 0.22) 

 

Figure 25: 20 Best Features (precision 0.93, recall 0.07) 

Figure 24 and Figure 25 visually show the difference between the different feature sets used for 

classification. These images show a sub-region of the images used for measuring the performance of 

the classifiers. We can see that using all 96 features gives a much higher rate of recall than using the 

20 best features found. In this comparison we can see that both classifiers have achieved a similar 

level of precision, however in other images this in not the case (Table 9). 
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Discussion 

Hyper-Parameters 
Choosing the optimal hyper-parameters was key to getting the highest performance from the 

classifier. Using a grid search allowed us to visualise the possible search space and choose the best 

values for C and Gamma. This search shows the relationship between C and Gamma and how varying 

these parameters could affect the precision and recall achieved by our classifier. By using the F-Score 

we are able to select a set of hyper-parameters that achieve both good precision and recall values. 

We can see that the optimal hyper-parameters were C = 24 and Gamma = 26. We can generally 

sacrifice recall to increase precision so long as enough positive classifications can be made to still fit 

a wire; increasing the precision means there are less false positives which will make subsequent 

tasks, like wire fitting, easier. 

Feature Selection 
The feature selection process is required to reduce the number of features while still maintaining an 

acceptable level of performance. Fewer features results in less computation when creating each 

vector and by the SVM in order to classify each example. While performing the leave one out 

method of feature selection we observed some interesting behaviour. Two of the support vector 

machines diverged from the other two, while each pair of SVM maintained a very similar level of 

performance throughout the feature selection process. The blue and green2 SVMs both initially 

showed slight increases in performance as features were being removed. This can be attributed to 

reducing the amount of over fitting done by the classifier which is often caused by having redundant 

or useless features in the training data. We then see the performance plateaued until only 20 

features remain; at this point the performance begins a rapid decline which is to be expected as the 

classifier starts to starve for features and can no longer maintain a high level of performance. The 

red and green1 SVMs showed a different performance profile as features were removed, neither 

showed the initial increase in performance that was observed in the blue and green2 SVMs. Once 

only 60 features remained, both red and green1 SVMs began their decline in performance; some 20 

features earlier than in the other two SVMs. At 30 remaining features, both red and green1 SVMs 

had begun rapid decline in performance, approximately 10 features earlier than the other two SVMs. 

It is unknown what would cause the divergence in performance between the classifiers however it is 

worth noting that both the red and green1 SVMs fell on the same row while the blue and green2 

SVMs fell on the row below (see Figure 13).  Additional testing would need to be done in order to 

discover the course of this divergence; all four SVMs were given access to the same feature library 

and trained under the same set of conditions. 

Training Examples 
Selecting the optimal set of training examples is critical for allowing the SVMs to correctly calibrate 

the misclassification costs. As can be seen in Table 8, selecting too few positive examples results in 

the decreased performance of the classifier. Not selecting enough Negative examples results in a 

larger number of false positives and a decreased precision.  Not selecting enough positive examples 

results in a reduced recall rate which can be seen in Table 8; the F-Scores only begin to reach optimal 

values after 400 positive examples are included in the training data. 
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Overall Performance 
Given the optimal hyper-parameters and number of training examples found previously, we tested 

the performance of the classifier using four different feature sets. Three of the four feature sets 

used the pixel masking system previously discussed; these were the 20 optimal features for each 

SVM, the 32 alternating rows and columns, and the full set of 96 features. The fourth feature set 

contained 64 features; one for each pixel. This final feature set did not use a mask based vectoriser 

like the other three feature sets, instead it used a vectoriser which directly iterated over a region of 

interest centred on the pixel being classified. 

Classification Time 

The time taking to classify an entire image increases in relation to the number of features used in 

each vector. This polynomial growth in performance is to be expected because the underlying SVM 

implementation scales between  (                    
 ) and  (                    

 ) (18). We 

were expecting the Raw Features experiment to fall slightly off this trend because its iterative 

method of vectorisation is more efficient than the mask based method. The mask based method 

requires that the vectoriser iterates over 64 Boolean values for each feature, then perform a 

comparison and fetch a value if the given pixel is part of the current feature, while the Raw feature 

set only iterates over the 64 pixels once, creating features out of each pixel.   However this 

difference in performance was not observed because the time taken for vectorisation was negligible 

in comparison to the time required for classification. The results obtained reiterate the importance 

of reducing the size of the feature set in order for the system to be able to classify examples at an 

acceptable rate. While even the fastest of the experiments, taking 1.69 seconds, is not fast enough 

for deployment. The classification time could be significantly reduced by pre-processing the images 

with a fast heuristic classifier, providing a level of boosting by removing pixels with a low likelihood 

of belonging to a wire; such as pixels that fall on the blue backdrop. 

Recall 

We see a significant decrease in the recall of the classifiers as the feature sets are reduced. All 96 

features and the Raw 64 features both achieved high recall values of 0.21 and 0.20 respectively. The 

96 features did not achieve a significantly greater recall value than the raw 64 features. This is 

because there is no additional information as the 32 additional features are derived from the original 

64. When using the row/col feature set we observed a significant drop in recall down to 0.15. The 

recall continues falling as we reduce the size of the feature set. With the 20 best features remaining 

we have the lowest recall of 0.05. This relationship shows that the recall drops significantly as the 

size of the feature set decreases. However achieving a recall rate of 0.05 still allows for the accurate 

identification of wires; this can be observed by comparing Figure 24 and Figure 25. 

Precision 

The precision value maintains a value between 0.93 and 0.94 for the experiments with the larger 

features sets, row/col, all 96, and raw. The 20 best selected features did have a reduced precision of 

0.88, which is a significant difference from the other three feature sets. While the precision level of 

0.88 is significantly lower than what was achieved by the other feature sets, this level of precision 

should still be great enough to allow for the wires’ locations to be found; as seen by comparing 

Figure 24 and Figure 25. 
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Improving Classification Time 
The camera on the robot captures 7.5 frames each second, this gives the system 133ms to perform 

all of the classification and decision making tasks. The wire detection system is not required to 

operate at this speed because most of the content in one frame will still be visible in the next. It 

would make integration into the system easier if it could perform at this speed.  

By finding the optimal subset of features used by the classifier, we have decreased the amount of 

time required for classification. However to achieve a significant improvement in performance we 

need to find more effective means of optimising the classifier. One such way of reducing the 

computation required would be to use a pre-processing heuristic. This pre-processor for example 

could mask out all of the pixels belonging to the blue background. The accurate classifier driven by 

the techniques discussed here would then only attempt to classify the remaining pixels. In some 

images more than 90% of the pixels belonged to the background so this technique alone could 

achieve a significant boost in performance.   
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Conclusion 
We have developed a system for training a classifier ideally suited to classifying wires from images of 

the canopy of grape vines. Our proposed classifier is not required to be tuned and uses no heuristics 

to identify wires. Instead we use a set of training data to train the system how to accurately identify 

wires. This frees the end user from the burden of manipulating parameters in order to achieve the 

desired results. The system only requires that the user provides an image containing the locations of 

the wires and allow the system to learn how to identify them. 

We have been able to achieve precision and recall values great enough to allow wires to be fitted to 

the classified pixels. These classified pixels can then be fed into the wire fitting system to find a wire 

model which represents the wire locations.  

Future work 
Ultimately the classifier presented would be only a portion of a system designed to extract the wire 

locations. By applying pre-processing techniques such as the removal of noise or large scale objects 

from the image, the task performed by the classifier can be simplified. Post-processing techniques 

such as the N out of M test used in our previous research (wire detection with neural networks) 

could be used to reduce the number of false positives. 

The cause of the divergence observed in the performance between the two sets of SVMs during the 

feature selection process remains undiscovered. One explanation is the eight by eight region of 

pixels was unable to constantly have good features created from it depending on the pixel colour it 

was centred on. To test this theory the use of a larger region of interest, perhaps ten by ten pixels, 

could be used to eliminate this effect.  

We found four separate optimal subsets of features; one for each SVM. We did not however find 

individual hyper-parameters for each SVM. It was assumed that finding individual sets of hyper-

parameters would result in similar values being found as the SVMs were working in the same 

problem space. However some additional performance may be obtainable by treating the hyper-

parameters separately for each SVM. 

The vines belonging to a vineyard will not all be homogeneous, instead plant structure will vary 

based on soil quality, irrigation, frost, etc.; all of these can vary across a single vineyard. The varying 

plant structure will affect the plant canopy and ultimately the environment the wires are being 

extracted from. In order to allow the system to adapt to slow changes across a vineyard we propose 

the development of a dynamic training system. This would allow the system to be constantly 

learning and adapting to variations in the input data.   
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Appendices 

Example of Training Images 

 

 

 

Figure 26: Colour, Marked, and Bayer versions of training data 
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Video Demonstration 

 

http://www.youtube.com/watch?v=_yFVTFVCrWI 

http://www.youtube.com/watch?v=_yFVTFVCrWI
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