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Abstract

Personalised one-to-one tutoring is known to be the most effective form of instruction. However, with
limited resources, the situation in most educational settings falls far short of this ideal. Intelligent Tu-
toring Systems (ITSs) are computerised systems which have the potential to provide instruction which
is pedagogically equivalent to personalised tutoring. Extensive research has been focused on improving
the effectiveness of ITSs in a variety of ways. This report presents an evaluation of the effectiveness for
learning of two different interaction styles: selection and typing.

Two interfaces for an ITS for thermodynamics called Thermo-Tutor are designed and developed. The
designs are justified in terms of theory from psychology and cognitive science. Finally an evaluation
is performed to measure the relative effectiveness of these interfaces and these results are analysed and
discussed.

Thermo-Tutor is developed using ASPIRE; a general purpose authoring system for constraint-based
ITSs. ASPIRE is used to reduce the development time and evaluate its effectiveness. The effectiveness of
ASPIRE is also analysed and discussed.

The results related to the relative effectiveness of the two interfaces are inconclusive. However, results
show that students did learn while using Thermo-Tutor and comments from students were generally posi-
tive. Therefore, development of Thermo-Tutor with ASPIRE was successful. This research also helped to
identify some possible improvements for the future.
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1 Introduction

1.1 Learning in Modern Society

Learning has always been fundamental to human existence and continues to be crucial in modern society.
The importance of learning in modern society also looks likely to increase. Learning is a process which
changes the way we are likely to behave. The experience of learning increases the likelihood that we will
react in some way to a given stimuli [1]. Learning has a profound influence over the human experience. It
influences the way we perceive our world and the way we interpret new information. Consequently, it also
influences how we react to new situations and information. Learning influences practically every aspect of
our lives.

Learning has been recognised as important across practically all areas of our society including business,
government and military. Many organisations and individuals are seeking more effective learning methods
to reap the many advantages that learning offers. Organised learning is often undertaken to increase pro-
ductivity and efficiency, achieve a variety of performance-oriented goals, and gain and retain an advantage
over the competition. Consequently, learning has been studied in many fields, and many theories have been
proposed to attempt to explain and understand the processes involved in learning. These theories include
behaviourism, cognitivism, and constructivism. Learning has also been studied from a physiological point
of view in an attempt to explain the process of learning in a more scientific manner [2]. However, despite
extensive research many disagreements among experts in the field remain.

1.2 The State of Education

Studies have shown that the best student learning occurs during one-on-one interaction with an experienced
tutor [3, 4]. However the current situation in education falls a long way short of this ideal. Even in well-
funded institutions the student-to-teacher ratio is not sufficient to make this feasible, and the problem is
even more prevalent in poorly funded institutions. Because of this, teachers are often forced to make their
teaching technique suitable for the average student. High achieving students become bored and frustrated
by the slow pace and lack of challenge and so fail to achieve their best. Low achieving students find the
work very difficult and never receive the level of attention they require to achieve their best. Furthermore,
even those students who find the difficulty level appropriate are not ideally accommodated by such a system
because they do not receive the amount of one-on-one interaction with the tutor that they require for optimal
learning.

1.3 Computers in Education

Computers have the potential to solve some of these problems in modern education systems. Computer-
based educational systems could provide the level of scalability that is needed to educate on a large scale
with the current human and financial resource limitations. Computer-based educational systems could
provide low operating costs and a relatively low initial investment if they are deployed on a suitable scale.

Some approaches to computer-based education include computer-based learning or training, computer-
supported collaborative learning, learning management systems, computer-aided instruction and intelligent
tutoring systems. These examples are often placed in the category of “E-Learning”. The exact definition
of E-Learning is not clear, and it is a term often associated with distance learning. To prevent confusion, I
will continue to use the term Computer-Based Education to describe any computer system which employs
“pedagogy empowered by digital technology” [5]. These systems do not necessarily need to be used in the
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2 1. INTRODUCTION

context of distance learning, or any other specific context. The only requirement is that they use computers
to support some pedagogy.

Computer-Based Education (CBE) has been the subject of much excitement in the past two decades
and also much criticism in more recent years [6, 7]. Those who are critical of CBE generally claim that it
has failed to live up to promises. Those who support CBE say it has great potential to improve the quality
of teaching and learning, but the implementation is still in the first phase.

There is a general opinion among some experts that the majority of CBE applications are too simple.
Many CBE applications provide an experience which is inferior to more traditional methods. Many are in
their nature very similar to traditional methods which have been known to be ineffective in some way. For
example, learning management systems can be pedagogically equivalent to a notice board, and computer-
based instruction can be pedagogically equivalent to textbooks. The potential advantages of CBE systems
will not be fully realised until they provide some pedagogical benefit to the student. The technology in
itself is of very limited benefit; what counts is how this technology is applied.

1.4 Overview
An Intelligent Tutoring System (ITS) is any computer system that provides individualised, adaptive instruc-
tion to students. ITSs aim to provide an experience that is similar to personal tutoring without the need for
human intervention. The primary mechanism used by ITSs to provide adaptiveness is student modelling.
The exact method used for student modelling varies between ITSs. The fundamental requirement of a stu-
dent model is that it contains a model of the student’s knowledge that can be used to influence pedagogical
decisions. Student modelling techniques are usually based on theory from psychology and cognitive sci-
ence. Applying them in practice often requires the use of techniques from the field of artificial intelligence.
Consequently, ITSs are among the most sophisticated forms of CBE in widespread use today. The benefits
of ITSs and other sophisticated forms of CBE have been demonstrated in numerous studies [8, 9, 10].

However, many open questions remain regarding how these systems should operate and the experience
they should provide to the student. For example, there is much uncertainty regarding the amount of as-
sistance that ITSs should provide. Extensive research has been conducted to answer similar questions in
the broader field of education [11], and in ITSs specifically [12]. However, assistance can be provided in
many different ways, and it is not always clear how results from the field of education should be applied
to CBE. Moreover, much of the theory which was obtained via fairly artificial psychological experiments
is only beginning to be applied and tested in more realistic educational scenarios. This report presents an
attempt to apply some of this previous research to an ITS for introductory thermodynamics called Thermo-
Tutor. The theory is discussed and used to guide the redesign of the interface for Thermo-Tutor. Finally,
an evaluation is conducted to identify the benefits and costs of this new design.

1.5 Motivations for this Research
Although ITSs have been shown to achieve high learning rates in a short amount of time in a variety of
domains [8, 9, 10], their performance still falls significantly short of personal human tutoring [4]. An on
going goal of ITS development is to provide more effective learning. There are many ways that researchers
are seeking to achieve this goal. This research investigates the interaction style of the interface as one
possible way of providing more effective learning in an ITS.

1.6 Structure of this Report
Section 2 summarises and discusses the background material relevant to this project. It provides an
overview of ITSs, theories of cognition, and other effects that may be observable in this research. It is
not intended to provide an exhaustive analysis of this material. I will outline only the most immediately
relevant concepts and provide references for further reading. Section 3 outlines the goals and hypotheses
for this research. Section 4 describes the design and implementation of Thermo-Tutor and the alterations
made to the interface. The motivations behind the redesign, the relevant forces and their associated trade-
offs are also briefly discussed. Section 5 describes the evaluation and discusses the results. Section 6
provides an overall discussion of this research and possible future work. Finally, Section 7 summarises and
concludes this report.



2 Related Work

2.1 Intelligent Tutoring Systems

Intelligent Tutoring Systems aim to emulate one-on-one interaction in order to achieve results similar to
personal human tutoring. In addition, ITSs have the potential to alleviate the issues found in the education
system associated with a lack of resources. After an ITS has been developed it can be used to teach any
number of students at very low cost. In order for an ITS to effectively emulate one-on-one tutoring it must
fulfil two main requirements. Firstly, it must be able to adapt to accommodate students of varying levels of
ability. Secondly, it must be able to give meaningful feedback to the student regarding their errors to help
them correct their misconceptions.

There have been several approaches devised to allow an ITS to adapt to students of varying ability
levels. The ITS must maintain some model of each student’s knowledge; this is known as a student model.
Several student modelling approaches have been devised, each with strengths and weaknesses. Student
modelling is fundamental to the operation of an ITS. A suitable student model would usually include
information regarding what the student has understood, misunderstood and not yet encountered. The degree
of adaptability varies between ITSs. Usually ITSs are adaptive in that they are capable of selecting a
problem of a suitable difficulty for a given student.

An ITS must also be capable of providing meaningful feedback to the student regarding their errors.
To achieve this, the ITS must have some mechanism of evaluating students’ solutions and/or tracking their
progress. Student modelling approaches are described in greater detail in the following section. An ITS
can also adapt the type and amount of feedback given to students based on their ability. This would usually
mean that low ability students are given more help than high ability students.

To effectively emulate the behaviour of a personal tutor also requires that the ITS include some model
of the domain it is designed to teach. Several modelling techniques have been proposed to support this. The
modelling technique used is often considered a major defining characteristic of an ITS. Today the two most
common modelling techniques are Model Tracing (MT) and Constraint-Based Modelling (CBM), which
are used by Cognitive Tutors and Constraint-Based Tutors respectively. The student modelling technique
typically corresponds closely to the domain modelling technique. Below I give a description of Cognitive
Tutors and Constraint-Based Tutors, see [13] for a more detailed comparison of the two techniques.

2.1.1 Modelling

Cognitive Tutors

Cognitive tutors utilize the MT technique, which is derived from the ACT-R cognitive theory [14]. This
theory assumes there to be two long-term memory states: declarative and procedural. The theory explains
that the human learner goes through several stages of knowledge construction. The learner firstly gains
declarative knowledge, which includes factual details, theorems and other principles. This declarative
knowledge is later organized into procedural knowledge, which is goal-oriented. Procedural knowledge
is more efficient to use and less error-prone because it leaves fewer decisions to make while performing
some procedure. Declarative knowledge can be quite detailed, but it lacks the structure, organization and
goal-oriented nature of procedural knowledge.

Procedural knowledge is defined in terms of production rules, each of which define what action should
be taken, given some circumstance. The fundamental assumption of ACT-R is that a person’s cognitive
skills in a domain are defined by the production rules they possess. Therefore, the goal of cognitive tutors
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is to teach the student the correct set of production rules. So clearly the mechanism used by cognitive tutors
to evaluate students’ solutions and provide feedback (the domain model) should also be defined in terms of
production rules.

Cognitive tutors model domain expertise as a set of production rules, which is also known as a generic
student model. This cognitive model describes the domain expertise required to perform tasks well (and
perhaps also poorly). Cognitive tutors react immediately to each step a student takes. An error is defined
as when the student’s action does not match any rule, or when it does match one of the buggy rules. This
process is called model tracing because it involves tracing the student’s actions against the expected actions
defined by the generic student model. Cognitive tutors must also maintain a student-specific model, which
is constructed through a process called knowledge tracing. This student-specific model (also known as the
student model) is the tutor’s representation of the student’s knowledge.

Each production rule in a cognitive tutor is defined as follows:

If goal is <goal>

And the situation is <situation>

Then perform the action <action>

For example:

If the goal is ‘to have a room temperature of 21 degrees’

And the situation is ‘the current room temperature is below 21 degrees’

Then perform the action ‘turn on the heater’.

Constraint-Based Tutors

CBM was originally proposed by Ohlsson [15] as a method which may overcome the intractable nature
of student modelling. CBM is rooted in Ohlsson’s own theory of learning from performance errors. This
theory points out that even when we have been taught how to perform some task we often continue making
mistakes for some time. According to this theory, we continue making mistakes when we have not yet
internalized our declarative knowledge as procedural knowledge. This means we must make many more
decisions while performing some procedure which increases the likelihood of errors. With more practice
we can identify the mistakes we make (perhaps with the aid of a mentor) and modify our procedural
knowledge accordingly.

CBM is an inherently simpler mechanism that MT. The Constraint-Based approach aims to determine
the validity of the state the student is currently in. It does not aim to immediately determine if the student
has left the path of the problem solving procedure because it deems this to be unnecessary. To put this
differently, “In CBM, we are not interested in what the student has done, but in what state they are currently
in” [13]. This simplicity is justified by recognizing that the student cannot arrive at a correct solution by
traversing a problem state that violates any fundamental principle of the domain. Thus, by determining that
the state the student is currently in is valid, we will have determined that the problem solving procedure
used by the student is also valid.

Each constraint in a Constraint-Based tutor is defined as follows:

If <relevance condition> is true then

<satisfaction condition> must also be true

For example:

If ‘the current room temperature is below 21 degrees’ is true then

‘the heater is on’ must also be true.

2.1.2 ASPIRE

Description and Purpose

Efforts to reduce the cost of developing ITSs began with ITS shells such as WETAS; a web-based shell
which facilitates the development of constraint-based tutors [16]. ITSs typically share a common archi-
tecture in the way they are composed of modules. ITS shells typically provide all domain independent
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modules. While many modules in an ITS are domain independent, one particular component is not; the
domain model. The domain model also consumes the most time and requires the most expertise during
development. ASPIRE is an authoring system for the development of constraint-based ITSs. The goal
of ASPIRE is to accelerate the development of the domain model to reduce the overall cost of develop-
ing constraint-based ITSs [17]. ASPIRE guides the author through a semi-automated process to develop
the domain model. It then allows the author to deploy their tutor on the web, with all other necessary
modules included automatically. It is also hoped that ASPIRE will allow a domain expert with little or
no programming background to create an ITS for their domain. This will help alleviate many common
issues encountered in ITS development such as the author failing to properly understand the domain, and
communication failures between the domain expert and the author.

In Constraint-Based Modelling (CBM) the single biggest task is creating the constraints that make up
the knowledge base. This task can seem even greater to a domain expert with little programming expertise.
ASPIRE can generate many of these constraints automatically, in a way that domain experts with little or no
programming background could carry out. Evaluation has shown [17] that ASPIRE can generate all syntax
constraints that were developed manually for KERMIT [18, 19], and all but two that were developed for
NORMIT [18, 20]. It was also found that ASPIRE could generate 85% of the semantic constraints found
in KERMIT, and the complete set of semantic constraints that exist for NORMIT. The difference between
syntax and semantic constraints is discussed in the following section.

Authoring Process

The main purpose of ASPIRE is to simplify the process of authoring an ITS. It does so by allowing the
author to describe the domain in an abstract manner, without the need for programming. The following
steps make up ASPIRE’s authoring process [17].

1. Specifying the domain characteristics
2. Composing the domain ontology
3. Modelling the problem and solution structures
4. Designing the student interface
5. Adding problems and solution
6. Generating syntax constraints
7. Generating semantic constraints
8. Validating the generated constraints
9. Deploying the tutoring system

I will give an outline of what is involved in developing the ontology (step 2) and adding problems
and solutions (step 5) because these steps have a direct effect on the generation of syntax and semantic
constraints. For a more complete description of the authoring process see [17].

The ontology is an abstract model of the concepts in the domain. The following general definition has
been given [21]:

“An ontology may take a variety of forms, but necessarily it will include a vocabulary of terms, and
some specification of their meaning. This includes definitions and an indication of how concepts are inter-
related which collectively impose a structure on the domain and constrain the possible interpretations of
terms.”

The ontology that ASPIRE allows an author to create is simpler than some other ontologies. This
is necessary for it to be easily understood by domain experts with little domain modelling experience.
ASPIRE provides a workspace for the author to visually develop the ontology. Creating the ontology in
ASPIRE is not unlike creating a UML class diagram. The author specifies the hierarchical structure of
concepts in terms of sub- and super-concepts. They can also define various properties of concepts and
other relationships which are not of a hierarchical nature. Studies have shown ontologies to be an effective
way of expressing domain concepts [22]. A preliminary study has also shown that an ontology assists in
the composition of constraints for constraint-based tutors [23]. The study showed that authors reflect on the
domain, organize constraints and produce more complete constraints for a domain when using an ontology.



6 2. RELATED WORK

ASPIRE uses the ontology created by the author to generate syntax constraints. These constraints check
that the student’s solution is syntactically valid, but not necessarily correct. To generate the syntax con-
straints, ASPIRE examines the relationships and properties defined in the ontology, as well as the restrictions
placed on these relationships and properties.

Before ASPIRE can generate semantic constraints the author must define a set of problems and solutions
for the domain. For each problem the author must specify the problem statement and one or more correct
solutions. The author can specify multiple correct solutions for a single problem, and ASPIRE will use this
to learn about the different ways of solving that problem. Semantic constraints are generated by putting the
problems and their solution sets through a machine learning algorithm [17]. This algorithm analyses solu-
tions pair-wise to determine similarities and differences between them. The resulting constraints compare
the student’s solution to the correct solutions defined for a problem to identify errors and provide feedback
to help the student reach the correct solution.

For this report it is also important to understand the process of validating the generated constraints (step
8). It is always necessary to check that these constraints correctly catch all errors and provide appropriate
feedback. The degree to which the constraints need to be altered will vary depending on the domain. It
hoped that no significant alterations will be required. However, it is expected that at least the feedback
messages of all constraints will have to be altered. ASPIRE generates default feedback messages, but these
will usually have to be rewritten to be easier to comprehend.

For more complex domains it is expected that more substantial alterations to the constraints will be
required. Usually these changes will be made using the same constraint language which ASPIRE uses
in its own generated constraints. This language is a subset of Common Lisp, and includes many useful
functions to make expressing constraints as simple as possible. More sophisticated functionality can also
be implemented with domain functions. Domain functions give the developer the full power of Common
Lisp, allowing constraints of arbitrary complexity to be written. ASPIRE does not generate constraints
which use domain functions, and it is not expected that a domain expert with no programming expertise
would be capable of writing domain functions.

2.1.3 Thermo-Tutor

Description and Purpose

Thermo-Tutor is intended to teach introductory thermodynamics to second year engineering students. More
specifically, it is intended to teach thermodynamic cycles in closed systems. It is not intended to cover the
entire course, nor the homework component of an entire course. Instead, it is intended to complement a
particularly troublesome section of the course and to help get students started in thermodynamics.

Several people have contributed to the development of Thermo-Tutor. This project follows from a
summer project I conducted to continue development of Thermo-Tutor [24].

Thermo-Tutor is being developed using ASPIRE in order to reduce the development time required and
to evaluate ASPIRE’s performance.

Solving Thermodynamics Problems

When designing the interface for Thermo-Tutor one of the goals was to make the students’ experience
correspond closely to how they would usually solve such problems on paper. This is important to make
it natural and easy to use, and also to support transfer of the problem solving skills students gain from
using the tutor to solving similar problems outside the tutor. We aimed to make Thermo-Tutor suitable for
solving problems related to cycles in closed systems. To solve such problems usually involves two main
phases:

1. Draw the diagram: This includes collating all that is known about the cycle. From this information
the student draws a diagram that represents all the states and transitions in the cycle.

2. Calculate unknown properties: Using a number of formulae it is possible to calculate the unknown
properties of states and transitions.

The first phase in solving a thermodynamic cycle problem is to draw a state diagram. This shows the
states and transitions involved in the cycle. A state is a point where the system is at equilibrium under a
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given set of conditions. A state is described by three properties; pressure, volume and temperature. The
relationship between these properties is also defined such that if two properties are known then the third
can be calculated without any additional information. A transition (also known as a process) describes the
way the system changes from an initial state to a final state. Transitions are generally distinguished from
others by what remains constant throughout the transition (pressure, volume, temperature or heat).

A diagram of a thermodynamic cycle shows the states involved in the cycle with axis of pressure versus
volume (see Figure 2.2). Often this diagram will not include scales on the axis as it is used primarily to
show relative positions of states.

The diagram also shows the transitions between these states. The shape and direction of these transi-
tions gives some indication as to the type of transition. In Figure 2.2 it is clear that transition 2 - 3 is an
isochoric (constant volume) transition as it is perpendicular to the x-axis.

When the diagram is complete the next phase is to build upon what is known about the cycle until all
properties of all transitions and states are known. There are a quite a number of formulae used during this
phase and there are usually many ways of determining each property. It is often necessary to calculate
certain properties in some order, but there are also usually several properties which can be calculated at any
one point in the problem solving process. The set of properties which can be calculated is dependent on
the properties that are currently known, and the types of transitions present in the cycle. For example, the
change in internal energy of a transition can often not be calculated until the temperatures at both the initial
and final states are known, and some formulae are only valid for isothermal (constant volume) transitions.
In general, it is necessary to determine at least two properties of each state, and from this it is possible to
determine all properties of transitions. However, it is sometimes sufficient to determine just one property
of some states. This is because some formulae which are related to specific types of transitions implicitly
contain information about these types of transitions.

Problem Set and Scope

Thermo-Tutor is designed to support problems involving thermodynamic cycles in closed systems. This
restriction clearly defines the scope of supported problems and also means that more advanced concepts
of thermodynamics do not need to be considered. In particular this means that all problems only require
students to have an understanding of the first law of thermodynamics.

Thermo-Tutor is not intended to cover an entire course, nor the homework component of an entire
course. It is intended to give new students the opportunity to experiment with the fundamentals of thermo-
dynamics. The common errors which new students make appear even in the relatively simple problems that
Thermo-Tutor supports. Often these early misconceptions are held for some time, and the problems caused
by these misconceptions are exasperated when the student attempts to solve more difficult problems. Ob-
viously providing an environment where early misconceptions can be corrected would be of great benefit
to both student and teacher.

Student Interface

The problems that Thermo-Tutor is designed to support involve three steps. An additional step is included
after drawing the diagram so all the information required for calculating unknown properties is visible on
screen.

1. Draw the diagram: Draw a diagram showing all the defined states for a given cycle, as well as
all the transitions between those states. While constructing the diagram the student also defines all
known properties of states and transitions that are specified or can be easily derived from the problem
statement.

2. Specify the constants: Specify five constants which will be necessary to calculate unknown proper-
ties.

3. Calculate unknown properties: Calculate the remaining unknown properties of states and transi-
tions using a set of thermodynamic formulae and principles.

Figure 2.1 shows the overall layout of the interface. The interface includes an area for the problem
statement (1), feedback (2) and solution workspace (3). ASPIRE provides the areas for the problem state-
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Figure 2.1: Thermo-Tutor Interface Layout

ment (1) and feedback (2), and also the controls above the problem statement. The solution workspace (3)
is where the student solves problems. For Thermo-Tutor, it is implemented as a Java applet. The remain-
der of this section is concerned with the way the student uses this Java applet to solve thermodynamics
problems.

Figure 2.2 shows the overall layout of the solution workspace. The solution workspace includes a
toolbar (1), diagram workspace (2), data summary (3) and formula workspace (4). The toolbar (1) allows
the user to select objects to place on the diagram workspace, as well as other functions such as undo/redo,
deleting objects, clearing the diagram workspace and submitting a solution. The diagram workspace (2) is
where the user draws the states and transitions to represent the thermodynamic cycle. The data summary
(3) displays all the information known relating to the thermodynamic cycle. The formula workspace (4)
is where the user calculates unknown values to iteratively build upon what is known about the cycle. The
values of unknowns appear in the data summary when they have been calculated. Double-clicking or right-
clicking values on the data summary causes them to be copied into the currently selected cell on the formula
workspace (highlighted blue above).

Drawing the Diagram

Thermo-Tutor allows the student to create a diagram of a thermodynamic cycle with a simple point-and-
click style interface. At the same time the student can enter any known properties of states and transitions
provided in the problem statement. Figure 2.3 shows the problem workspace when the user has just added a
new state to the diagram workspace. Some properties of states may not be explicitly given by the problem
statement, but instead must be inferred by the student using their knowledge of thermodynamics. For
example, an isobaric transition is one in which the pressure remains constant. In this case the student may
only be given the pressure of the start state, the student would then be required to infer that the pressure of
the end state is the same. During this first step the student will not be required to carry out any calculations.
All the information required to complete this step comes directly from the problem statement.
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Figure 2.2: Layout of the Solution Workspace

Figure 2.3: Adding a new state to the diagram

Specifying Some Constants

After the student has completed the diagram they must specify values for four constants which may be
used in calculations in the following step. These constants are Cv (heat capacity at constant volume), Cp
(heat capacity at constant pressure), R (ideal gas constant) and γ (used for adiabatic transitions). Figure 2.4
shows selecting a value for Cv by clicking the ‘...’ button beside ‘Cv’ in the data summary. This step
is included so that the data summary displays all information that the student could possibly need for
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subsequent calculations in the next step.

Figure 2.4: Selecting value for Cv

Calculating Unknowns

After the student has correctly selected values for the four constants they move on to calculating the un-
known properties of states and transitions. Carrying out this step on paper involves using formulae to
gradually build upon what is known about the cycle. The formulae used will depend upon what is known
initially, and the type of transitions present in the cycle. Some of the formulae involve exponents and log-
arithms, which make it difficult to design an interface which is easy to use with a mouse and keyboard.
Many people find entering mathematical expressions with a keyboard cumbersome, and for good reason.
The method of entering expressions via a keyboard differs significantly from the usual method of using a
calculator.

This stage raised the most significant issues of interface design. The task as I saw it was to find a
compromise between two somewhat opposing requirements. The interface must firstly reflect how the
problem would be solved on paper, and secondly be very quick and easy to use. The former is important to
facilitate transfer, and the latter is important to minimize the cognitive load imposed by the interface so the
student is able to concentrate on the problem solving task. While these two requirements are not entirely
opposing, satisfying both to an appropriate level proved very difficult.

The steps required to find the value of a single unknown are:

1. Select the unknown to calculate
2. Select the formula group to use
3. Select the formula to use from this group
4. If necessary, rearrange formula by selecting from alternatives
5. Fill in all variables in the equation and specify the units of the result
6. Evaluate the equation to get the value for this unknown
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The interface firstly requires the student to select which unknown they are going to calculate (Fig-
ure 2.5).

Figure 2.5: Selecting the unknown to calculate

Next the student must select the formula group they are going to use (Figure 2.6).

Figure 2.6: Selecting the formula group

After selecting the formula group, a dialog is raised displaying the formulae in that group (Figure 2.7).
The student must select the correct formula from this dialog. Each group contains a number of formulae,
some of which are valid under some circumstances, and some which are never valid.

Figure 2.7: Selecting the formula from the group

Some formulae also need to be rearranged. Figure 2.8 shows the state of the interface after selecting a
formula which needs to be rearranged. This step is skipped for formulae which do not need to be rearranged.

Figure 2.8: Formula needs to be rearranged
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Figure 2.9 shows the dialog which is raised after clicking the Rearrange button. The student must
simply make a selection from this dialog, exactly as in the previous step.

Figure 2.9: Selecting rearrangment

Now the formula is ready to be filled in (Figure 2.10). The student must provide values for all the
variables on the right hand side of the equation, and select a unit for the result. The interface provides a
textbox for each variable in the formula. The student must fill in each of these textboxes by selecting the
value from the data summary. Values can be copied from the data summary into the currently selected
textbox by double-clicking or right-clicking.

Figure 2.10: Filling in known values

2.2 Learning, Memory and Cognition
2.2.1 Generation Effect

The generation effect states that generating (creating) a stimulus item almost always results in that item
being better remembered [25, 26] (see [27] for a review). It attempts to explain why and how forcing
students to be actively involved in a learning task by requiring them to generate all or part of the material
generally results in that material being better remembered. The generation effect can be described as
“learning by doing”. A large body of research has been focussed on this seemingly simple and intuitive
concept. Despite this, some controversy still remains about many of the most fundamental particulars of
the generation effect [27]. However, some fairly definite answers have been produced [27].

Early studies conducted to examine the generation effect involved the presentation of some type of
paired-associates list to participants. Some common examples include word lists, number and letter bi-
grams, mathematical equations and even nonsense word pairs [27]. In all cases half the pairs are provided
to the participants, which the participant must simply read (e.g., BRIGHT, DARK). The remainder of the
pairs are treated differently. The participants are given the first item of the pair (e.g., BRIGHT, ) along
with a rule that they must use to generate the second item of the pair (e.g., synonyms, antonyms, rhymes).
Many other variations of this basic method were also common in early studies. These include reading or
completing whole sentences [28], mathematical multiplication [29] or addition [30], and using anagrams
with intact or jumbled solutions [31].

Several studies have examined the generation effect in the context of real learning scenarios such as
arithmetic [29, 30] and even accounting [11]. However, the vast majority of study surrounding this effect
has been performed in the context of rather artificial psychological analysis and experiments.



2.2. LEARNING, MEMORY AND COGNITION 13

2.2.2 Cognitive Load Theory

Cognitive load theory (CLT) [32, 33] describes the operations of working memory in terms of its funda-
mental limitations. It observes that all but the simplest of cognitive activities appear to be subject to these
limitations. CLT uses the concept of cognitive load to describe the limitations of our working memory.
There are three basic types of cognitive load:

• Intrinsic: Results from the inherent complexity of the instructional material. This cannot be manip-
ulated by instructional design. It can only be manipulated by altering the material itself, for example
by splitting material so it can be presented as several separate parts to be recombined later.

• Extraneous: Results from the manner in which material is presented to students. This is under
the control of the instructional designer because it is a direct consequence of instructional design.
Choosing more appropriate methods of presenting material will reduce extraneous cognitive load
which will generally increase the efficiency of instruction.

• Germane: The cognitive load devoted to processing, construction and automation of schemas. This
is the load devoted to actual “learning” as it is defined by cognitive load theory. Effective instruction
should promote germane cognitive load.

CLT describes knowledge in terms of schemas [32, 34]. Schemas are the fundamental construct for
organising elements of information that are used together. A schema represents an abstract concept that
can be applied in a range of contexts. For example, people will usually have an abstract idea of a tree in
the form of a schema. This tree schema allows a person to effortlessly categorise and deal with the infinite
complexity of trees. The abstract nature of these schemas also make them very suitable for dealing with
problem solving [35]. They allow a person to deal with the infinite variety of a certain type of problem.
The vast majority of learned, intellectual skills can be elegantly explained in terms of schemas.

CLT describes learning in terms of two critical mechanisms [32]; schema acquisition and transfer of
learned procedures from controlled to automatic processing. It is often convenient to think of schemas
being acquired in a dichotomous fashion; a person either has or has not acquired a schema. However,
learning a new intellectual skill usually happens very gradually. When some new skill is first learned it is
very difficult to apply it successfully. The application of this new skill does not occur in a fluent or effortless
manner for some time. After some amount of time the application of a new skill switches from being
controlled to automatic [32, 36, 37]. Controlled processing requires conscious attention and deliberate
thought, automatic processing does not. Controlled and automatic processing are also conveniently thought
of as dichotomous states. In reality, the transition from controlled to automatic processing usually happens
gradually.

It is important to note that learning as described by CLT also imposes a cognitive load; germane cogni-
tive load. Learning is in itself a cognitive activity, and so it is subject to all the same limitations of human
cognitive architecture. Therefore, when designing instruction to achieve optimal learning it is essential
to consider CLT. Instruction should generally be designed to limit the amount of unnecessary processing
(extraneous cognitive load) and promote cognitive activity that is devoted to learning (germane cognitive
load). However, it is often difficult to determine if some cognitive activity is extraneous or germane. It is
often tied to the student’s level of expertise. An activity which is germane for an expert is likely to be ex-
traneous for a novice and vice versa. This is related to the degree of guidance provided which is discussed
in the following section.

2.2.3 Guidance and Assistance Dilemma

The amount of guidance that a student should be provided when completing some learning task remains
an open question. In fact the various teaching strategies that are advocated by experts can be distinguished
by varying degrees and types of guidance. This spectrum of guidance ranges from unguided or mini-
mally guided environments to direct instructional guidance. Advocates of unguided or minimally guided
environments hypothesise that people learn best when they are required to discover or construct essential
information for themselves [38, 39, 40]. Others argue that novice learners should be provided with direct
instructional guidance on the required concepts and procedures [41, 42, 43]. Some examples of teaching
strategies which are generally regarded to exhibit less than direct instructional guidance include discov-
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ery learning, inquiry learning, experimental learning and constructivist learning. However, the degree of
guidance provided can also be adjusted within each of these teaching strategies.

There are many ways to discuss guidance in education. One such way which appeared recently is known
as the assistance dilemma [44]. The assistance dilemma has been explored in the context of ITSs [12].
Assistance is defined as any instructional affordance or change to the learning environment which makes
the task easier (increases performance) or reduces mental effort (cognitive load). So in reality, assistance
is more than just guidance, but the most common way of providing assistance is to increase guidance.
The assistance dilemma poses the question: “How should learning environments balance information or
assistance giving and withholding to achieve optimal student learning?” [12].

The matter of assistance remains a dilemma for two main reasons. Firstly, numerous experimental
results seem to show both positive and negative effects from greater levels of guidance. Secondly, despite
many advances, cognitive theory remains unable to predict when providing assistance will be beneficial or
harmful.

Understanding the assistance dilemma requires understanding why the level of assistance is not corre-
lated with learning outcomes [44]. High assistance during instruction can either be a “crutch” that harms
learning or a “scaffold” that bootstraps learning. Consider the example of a child learning to tie their shoes.
They need to be shown (provided a “scaffold”) several times before they will be able to tie their own shoes.
However, if their shoes continue to be tied for them (provided a “crutch”) they will never learn how to
do it themselves. Low assistance during instruction can either create a situation of desirable difficulty or
undesirable difficulty [45]. For a novice, low assistance can create a situation of undesirable activity where
their cognitive capacity is exhausted and they are forced to employ inefficient problem solving strategies
[46]. However, low assistance can create a situation of desirable difficulty for experts where they are
appropriately challenged and engaged (i.e., they are in their “zone of proximal development” [47]).

This seems to suggest that high assistance should be given to novices and assistance should decrease
as expertise increases. This idea is backed up by many long standing notions such as the zone of proximal
development [47]. This general rule has even been accepted to some degree among those advocating
teaching strategies which generally provide lower levels of guidance. For example, pure discovery learning
has been largely accepted as flawed, and other criticisms of “minimally guided” teaching strategies have
been met with rebuttals claiming that these methods can and sometimes do support higher degrees of
guidance. So again one might wonder what is the dilemma? We should just give novices high assistance
and fade the assistance as expertise increases. However, the current theory does not provide guidelines on
how much assistance should be provided initially, nor when or how quickly it should be faded. Nor can
the current theory predict when an instructional demand (or cognitive activity) is desirable or undesirable
(germane or extraneous). “The Assistance Dilemma remains unresolved because we do not have adequate
cognitive theory to make a priori predictions about what forms and levels of assistance yield robust learning
under what conditions” [44].



3 Design and Implementation

3.1 Goals and Hypotheses

3.1.1 Research Objectives

The primary objective of this research is to investigate what effect input method has on learning in an
Intelligent Tutoring System (ITS). This investigation will be carried out by modifying Thermo-Tutor; an
ITS designed to teach the fundamentals of solving problems involving thermodynamic cycles in closed
systems. The modifications will include designing and implementing an experimental interface which
requires the student to enter more information by typing as opposed to selection. The generation effect
[26] suggests that this may be beneficial to learning. Other theory from psychology and cognitive science
will also have to be considered during the design of this interface.

Thermo-Tutor is being developed in ASPIRE; a general purpose authoring system for developing Const-
raint-Based ITSs. A secondary aim of this research is to evaluate the effectiveness of ASPIRE as a general
purpose authoring system. I wish to examine whether ASPIRE is capable of allowing a domain expert (e.g.
a teacher) without programming expertise to create an ITS for their own domain.

3.1.2 Goals

In short, the goals of this research are:

1. Demonstrate the Generation Effect with an experimental interface for Thermo-Tutor
2. Evaluate the effectiveness of ASPIRE as a general purpose authoring system
3. Contribute to the set of available ITSs by completing Thermo-Tutor

3.1.3 Hypotheses

Correspondingly, my hypotheses are:

1. Requiring the student to provide more information by typing as opposed to selection will improve
learning.

2. ASPIRE will prove to be an effective authoring system for authors with little or no programming
expertise, but certain limitations will mean that some programming expertise is required for very
complex domains.

The first hypothesis is supported by the Generation Effect [26] which states that self-generated items
will, in general, be better remembered than items which are merely perceived by a person. There are other
theories from cognitive science which seem to suggest the opposite may actually occur. This theory has
been discussed further in Section 2.2

The second hypothesis is supported by previous evaluations of ASPIRE [17]. However, Thermo-Tutor
is more complex than other ITSs which have been developed previously in ASPIRE. Because of this com-
plexity, I believe that a significant amount of work which requires programming expertise will need to be
carried out. It is currently unclear how much assistance ASPIRE will be in this case.

15
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3.2 Completing Thermo-Tutor
Prior to this project the interface for Thermo-Tutor was considered complete. It was very similar to the
interface described in Section 2.1.3. The few small changes that were made are described in Section
3.3. However, prior to this study, the constraint base of Thermo-Tutor was not complete. Development
of constraints for the first step (drawing the diagram) was complete. Development of constraints for the
second and third steps (specifying the constants and calculating unknown properties) had not yet begun.
Significant effort during the first half of this project went into completing these constraints.

Generating constraints for the second and third steps of the tutor meant following ASPIRE’s authoring
process (described in Section 2.1.2). The most time consuming parts of this task include defining the
ontology, entering ideal solutions and editing the constraints that ASPIRE generates.

Defining the ontology in ASPIRE involved considering all the problems and their solutions in order to
devise an ontology capable of expressing the relevant concepts. It is important to get the ontology correct
near the beginning of development because changes to the ontology often require subsequent steps in the
authoring process to be repeated. It is also important that the ontology fully expresses the relevant concepts
in the domain because this will have a great influence over the quality of the constraints that ASPIRE is able
to generate.

Defining the ideal solutions was a particularly difficult task for the domain of thermodynamics for
two main reasons. Firstly, there is no single order in which unknown properties should be calculated.
Secondly, there is often multiple ways of calculating each unknown. ASPIRE’s authoring process allows it
to generate constraints for domains with multiple correct solutions (see Section 2.1.2). For such domains,
the author would typically specify the all the correct solutions. ASPIRE would then analyse these solutions
to generate constraints which would accept any of these solutions. Although the problems in Thermo-Tutor
have multiple solutions, it would be very difficult to enumerate them in this fashion. It would be difficult to
devise solutions which would match the student’s solution as a whole. It would usually be possible for the
student to produce a valid solution which takes parts from several of the correct solutions. The constraints
that ASPIRE generates for domains with multiple correct solutions would not allow the student to use parts
from several of the correct solutions.

I decided not to define the multiple ideal solutions in the usual fashion. I also decided not to define
the order in which properties should be calculated. Instead, the ideal solution for calculating unknown
properties is a set which enumerates all possible ways of calculating each unknown. Each calculation in
the student’s solution is examined in isolation and is considered correct if it matches one of the solutions
in this set. One final constraint ensures all properties of all transitions are calculated before the solution
is considered complete. The chosen representation of the ideal solution does not match the one assumed
by ASPIRE. Due to this mismatch, many modifications were required to the constraints which ASPIRE
generated (see Section 5.2). Thermo-Tutor is also not able to provide feedback which would help the
student decide which property to calculate next.

After entering the ideal solutions for all problems, ASPIRE was able to generate the constraints for
the second and third steps of Thermo-Tutor. The constraints which ASPIRE generated for the second step
were sufficient. However, these were edited slightly to provide more concise feedback. These alterations
involved making the constraints slightly more specific so that more specific feedback could be provided,
and writing the feedback messages themselves.

As expected, the constraints that ASPIRE generated for the third step required substantial changes.
These changes were required for two main reasons. Firstly, I had chosen a slightly unusual way of defining
the ideal solution. This meant that many constraints had to be deleted for reasons described previously.
Secondly, I wanted to provide more detailed feedback.

Several other changes were required because I wanted to provide more detailed feedback. These
changes are described in more detail in Section 5.2. There are two ways I aimed to improve the feed-
back Thermo-Tutor provided while calculating unknown properties. Firstly, I wanted to provide some
immediate feedback at certain stages. Secondly, I wanted the feedback to be able to provide the students
with hints about what to do next.

I wanted Thermo-Tutor to provide immediate feedback at certain stages during the process of calculat-
ing an unknown property (described in Section 2.1.3). In particular, I wanted Thermo-Tutor to immediately
inform the student when they made an error during each of the following substeps:
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1. Select the formula group
2. Select the formula from this group
3. Rearrange the formula

These substeps are repeated for each calculation made during the third step in Thermo-Tutor. There
are actually more substeps than in the process of calculating an unknown (see Section 2.1.3), but the
student only receives feedback regarding these three substeps; so only these steps need to be considered
when developing constraints. ASPIRE supports procedural problem domains with several steps and allows
feedback to be provided separately for each step. In fact, the three main steps which make up Thermo-
Tutor’s problem solving procedure are defined in exactly this way. Usually, the author would define a step
within ASPIRE for each point in the problem solving procedure where the answer must be checked, and
feedback should be provided. It would be possible to define a step for each of the three substeps described
above. However, ASPIRE requires an ideal solution to be defined for each step in the problem solving
procedure. This would require several parts of the ideal solution to be duplicated, which would make these
ideal solutions more difficult to create and maintain.

Instead I altered the constraints to allow feedback to be provided for each of the substeps above. The
applet keeps track of which step (or substep) the student is currently working on. This information is sent
with every submission of the student’s solution. The relevance condition of all constraints includes a check
of the current step, and only those constraints intended for the current step will be relevant. The constraints
which included these substeps are very similar to the constraints which ASPIRE would have generated if I
had chosen to define the substeps as real steps within ASPIRE. The difference is that they all operate on a
single ideal solution, which makes this ideal solution easier to create and maintain.

Other changes were required to the constraints because I wanted the feedback to provide some hints to
the student regarding what to do next. For example, when a student selects an incorrect formula group they
will be informed of this with a simple message. If the student requests more detailed feedback, they will
be told which formula groups they could use. ASPIRE did not generate these constraints. However, writing
them was fairly easy because ASPIRE generated constraints which I could base my own on.

Finally, the feedback messages corresponding to each constraint had to be completed. The feedback
message for a constraint is shown to the student when the constraint is violated. It is essential that these
messages are well designed because this is the main form of assistance that the tutor provides to the stu-
dent. These messages should contain the information the student requires to correct their misunderstanding
which lead to the error. ASPIRE automatically creates generic feedback messages, however these are in-
tended to be modified to provide more meaningful feedback.

3.3 Control Interface

A few small changes were made to the original interface of Thermo-Tutor to create the control interface
for this study. The most significant change was to disallow typing when making calculations. The original
interface gave the student the option of either typing values or selecting them from the data summary when
performing some calculation. Typing was disabled in the control interface so the two modes of interaction
were cleanly separated between the control and experimental interfaces. The student would be forced to
select in the control interface, and type in the experimental interface.

Several other minor changes were also made to the original interface. These changes were fairly small
improvements to make the interface easier to use. None of these changes would have a fundamental affect
on the users’ experience with Thermo-Tutor from a pedagogical point of view.

3.4 Experimental Interface

The experimental interface differs only in the final step of the problem solving procedure; calculating
unknowns. There are two main reasons why this area of the interface was chosen for redesign. Firstly,
the design of this part of the interface raised the most questions in the beginning. Secondly, calculating
unknowns is generally the most complicated, challenging and time consuming part of solving these types
of problems. It is expected that students will spend the majority of their time calculating unknowns, so this
is the area of the interface which is most likely to benefit from redesign.
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The experimental interface requires the student to do a lot more typing. It is expected that this will have
a negative effect on the students’ problem solving efficiency; however this is not the primary requirement
of the interface. The primary goal of Thermo-Tutor is to teach problem solving of thermodynamic cycles
in closed systems. Therefore, the interface of Thermo-Tutor should be designed in terms of pedagogical
factors, rather than efficiency or other factors from Human Computer Interaction.

3.4.1 Calculating Unknowns

In this section I will describe how a student calculates an unknown in the experimental interface. In this
new interface, the steps required to calculate a single unknown are:

1. Select the unknown to calculate
2. Select the formula group to use
3. Type the formula in the form which it will be used
4. Type the equation which uses this formula and specify the units of the result
5. Evaluate the equation to get the value for this unknown

There are a few very important differences to note. The first two steps are identical. The third step
differs in two ways. Firstly, the formula is manually typed in rather than selected from a set of alternatives.
Secondly, the formula is always entered in the form that it will be used, as opposed to specifying the “stan-
dard” version and then specifying the “rearranged” version. This change makes the previous rearrangement
step redundant. The fourth step corresponds to the fifth step in the control interface. This step requires the
student to use this formula, which involves entering it again with variables replaced by numeric values.
Finally the student can evaluate the equation to obtain the result for subsequent calculations exactly as in
the control interface.

The interface firstly requires the student to select which unknown they are going to calculate exactly as
in the control interface (Figure 3.1).

Figure 3.1: Selecting the unknown to calculate

Next the student must select the formula group they are going to use exactly as in the control interface
(Figure 3.2).

Figure 3.2: Selecting the formula group
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After selecting the formula group, the student must type the correct formula in the textbox (Figure 3.3).
This formula must be entered in the form that it will be used; there is no additional step for rearranging the
formula.

Figure 3.3: Entering the formula from the group

If the student struggles to enter the correct formula a dialog is raised to help them (Figure 3.4). This
dialog is raised if the student enters three incorrect, unique and syntactically valid formulae. This dialog
shows the formulae in the group which the student previously selected. It shows these formulae in their
“standard” form; the student will often be required to alter them slightly. Often the formula will have to be
rearranged to have the correct subject, and some of the terms may need to be altered to refer to the correct
properties. For example, the formulae in Figure 3.4 refer to T1 and T2. These may need to be altered to
instead refer to T2 and T3.

Figure 3.4: Assistance with entering the formula

When the student has entered the correct formula, it must then be filled in with values from the data
summary (Figure 3.5). The student must enter the entire formula again with variables replaced by values
and select a unit for the result.

Figure 3.5: Filling in known values

3.5 Motivation for Redesign
To understand the tradeoffs between the control and experimental interfaces it is necessary to understand
how these two designs came about. The control version was completed as part of a summer project I con-
ducted to continue development of Thermo-Tutor [24]. At the time of designing the interface I recognised
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that there were several factors influencing the design and that it would not be possible to satisfy them all. I
opted for a design which would allow the student to solve problems more efficiently.

An earlier design for the interface was very similar to the experimental interface. It was recognised that
this interface was likely to result in better transfer because it more closely reflected the process of using a
calculator. However, it was thought that this extra work would be unnecessary and tedious for the intended
user of Thermo-Tutor. Thermo-Tutor is intended for 200 level engineering students. These students will
be very familiar with using a calculator. The task of entering these expressions will be relatively trivial
compared to considering what is known and determining how to best use the formulae. There is some
truth in my previous observations, however I believe I underestimated the value of what I considered to be
“unnecessary and tedious” work.

I justified this decision in terms of cognitive load by assuming that a more efficient interface will reduce
the extraneous cognitive load imposed on the student which will allow the student to devote more of their
effort to actual learning. This assumption is somewhat justifiable from the point of view of Cognitive Load
Theory (CLT) [32]. However, the effect that this strategy has on learning remains unclear.

According to CLT, the underlying problem with this strategy is it relies on the student behaving in
a particular way. A better strategy would attempt to encourage the student to behave in a way which
is beneficial to learning, as opposed to simply hoping that they will behave in such a way. This can be
described in terms of cognitive load theory. The original strategy aims to reduce extraneous cognitive load
in the hope that the student will devote more attention to the material (increasing germane cognitive load).
A better strategy would aim to reduce extraneous cognitive load, but it would also aim to actively promote
germane load by forcing the student to engage in cognitive activity that is beneficial to learning.

There are several ways of examining the differences between the control and experimental interfaces.
Perhaps the simplest is from the point of view of interaction style. The control interface takes input via se-
lection; the experimental interface takes input via typing. This primary aim of this research is to investigate
what effect these two interaction styles have on learning.

3.6 Design Tradeoffs
When seeking research theory to help guide the design I discovered a large amount of material from cog-
nitive science and psychology that seemed relevant. The three main ideas that I had to consider were the
generation effect, cognitive load theory and guidance. The generation effect states that items which are
generated are generally better remembered than items which are merely read or perceived. Cognitive load
theory distinguishes between different types of cognitive load which is helpful when discussing the benefits
of some cognitive activity. Guidance is about determining how much assistance should be provided to the
student, and how much work they should be required to do themselves.

The generation effect predicts that material which the student has some part in generating or creating
will generally be better remembered. This would suggest that requiring the student to type formulae as
opposed to just selecting them from alternatives will result in those formulae being better remembered.
Memorising formulae is generally not considered essential, however memorising them is one step closer to
understanding them. A formula exists to represent some meaningful relationship between a set of proper-
ties. Understanding these relationships between properties is fundamental to thermodynamics. By forcing
the student to type these formulae it seems likely that the student will begin to recognise the relationships
that these formulae represent. This should eventually enable the student to better understand these rela-
tionships. I was concerned that the control interface would allow the student to select and fill in a formula
without having to examine the structure or meaning of that formula closely.

Cognitive load theory distinguishes between three main forms of cognitive load; intrinsic, extraneous
and germane. As instructional designers, we are primarily concerned with extraneous and germane cog-
nitive load. We generally aim to reduce extraneous and promote germane cognitive load. The control
interface aims to reduce extraneous cognitive load by providing the student with a very efficient interface,
however it fails to promote germane cognitive load because it does not require the student to engage with
the material. The experimental interface also aims to reduce extraneous cognitive load by providing a cer-
tain degree of leniency, and it aims to promote germane cognitive load by forcing the student to focus on
the meaningful aspects of the material. It is hoped that this will benefit learning because the student will
engage more deeply with the material.
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The issue of guidance is at the heart of much debate in the field of education. There are advocates
for all levels across the spectrum from minimal to full guidance. There are many strong arguments for
both sides of this debate. However, it is generally agreed that novices require very high guidance, and as
expertise increases the level of guidance required decreases. An ideal system would be aware of the level
of expertise of the student, and use this to provide the appropriate level of guidance. The experimental
interface provides less guidance than the control interface. In the control interface the student is provided
with a set of alternative formulae to choose from. On the other hand, the experimental interface allows
the student to enter any formula they wish. This formula need not even be syntactically valid. When the
student makes an error in the control interface, they can reselect from the same set of alternatives. They
could try all alternatives until they select the correct one by chance. In the experimental interface, it is very
unlikely that a student will be able to enter the correct formula by chance.

We attempted to increase the level of guidance provided to novices by the experimental interface.
When a student enters three incorrect, unique, syntactically valid formulae we assume this student must
be a novice. Consequently, a dialog is raised which displays a set of alternative formulae. This does not
provide the same level of guidance as the control interface because the student cannot select from these
alternatives. The alternatives are also shown in their “standard” form; often the student will be required to
adapt them slightly to suit their purpose. This usually involves rearranging the formula and adjusting the
terms slightly to refer to the correct properties. It is not possible for the two interfaces to provide the same
level of guidance because requiring the student to generate more is inherently guiding them less.

3.7 Added Complications
The experimental interface is far less restrictive in that it makes more of the task of constructing the solution
the students’ responsibility. This allows the student to enter a much wider range of possible solutions. This
means there are more ways in which the student can be incorrect which places greater demands on Thermo-
Tutor.

Thermo-Tutor must be capable of catching, analysing and providing feedback relating to these incorrect
solutions. To support this, Thermo-Tutor has to be capable of parsing mathematical expressions to get a
result, check for syntax errors and deal with equivalent expressions. Thermo-Tutor also had to handle
some additional errors and achieve an appropriate degree of leniency so that the student would not be
unnecessarily halted by meaningless errors.

Thermo-Tutor had to handle mathematical expressions in a more sophisticated way. Originally mathe-
matical expressions only had to be evaluated to get the result so it could be used for subsequent calculations.
These expressions could be guaranteed to be one of a small set that were provided. The experimental in-
terface allows the student to enter arbitrary formulae and expressions. The student could enter expressions
which are different but equivalent to the ideal solution, or contain syntax errors. Both these cases had to be
handled appropriately.

Solutions which are different but equivalent to the ideal solution should be accepted as correct. To
partially support this, a number of common equivalent solutions were defined in the ideal solution so these
would be accepted as correct. There are still many more equivalent solutions which are not included. To
allow the student to include redundant parentheses, I also implemented a simple parser which removed
these from the students’ solution before it is compared against the ideal solution. A better solution might
be to define the ideal solution using prefix notation. The student would continue to provide the solution
in infix notation, so these solutions would have to be converted to prefix notation before they are checked
against the ideal solution. This solution would work well because formulae and expressions defined in
prefix notation can be parsed without ambiguity and do not require any parentheses. This would eliminate
some of the ambiguity in the solution and make it easier to define the remainder of the acceptable equivalent
solutions.

The student could also enter solutions which contain syntax errors. These had to be caught by the parser
so that the student could be informed that they have made a syntax error.

The process that the experimental interface requires the student to follow is much less restrictive. This
meant that the student can make a number of errors which are simply not possible in the control interface.
For example, in the control interface the student selects a formula group and then they can only select a
formula from that group. In the experimental interface the student selects a formula group and is the free
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to enter any formula they wish. The student could select one valid formula group, and then enter a valid
formula from another group. Additional constraints had to be written to catch this and other errors.

The student can also enter expressions which are incorrect in some meaningless way. In these cases it
would not be appropriate to consider the students’ solution incorrect because the student would be forced to
spend time correcting this error with little or no educational benefit. Only errors which represent a genuine
misconception should be considered incorrect because forcing the student to correct these errors will be
beneficial to their learning. There are several ways the experimental version of Thermo-Tutor provides a
degree of leniency to support this goal. For example, formulae and expressions are not case sensitive and
they can include redundant parentheses. Students are also able to enter some formulae and expressions
which are not identical but equivalent to the ideal solution.

3.8 Tools Used
Thermo-Tutor was developed using ASPIRE. ASPIRE is written in Allegro Common Lisp and runs on the
AllegroServe web server on Microsoft Windows XP. ASPIRE also makes extensive use of JavaScript for
the web interfaces it provides, and XML for transmission and temporary storage of data. ASPIRE uses the
AllegroCache Object Oriented database for storing the majority of its operational data. The interface of
Thermo-Tutor is provided by a Java applet, and communicates with ASPIRE via XML over HTTP.

Development for this research involved several different of technologies. The majority of the develop-
ment was focussed on the interface of Thermo-Tutor which is developed in Java. Some JavaScript was also
required to customise the parts of the interface provided by ASPIRE. The solution format of the experi-
mental version was also altered, which required changes to the Java code which transmits XML to ASPIRE.
Constraints are written in a purpose built language which is a subset of Common Lisp.



4 Evaluation

4.1 Description
An evaluation study was conducted at the University of Canterbury as part of a 200-level course covering
transfer operations and thermodynamics. Students in this course are taught the relevant theory in weekly
lectures and are given the opportunity to practice their skills in tutorials and homework exercises.

4.2 Participants
Students from ENCH 2921 voluntarily participated in the evaluation study. Of the 63 students enrolled in
the course, 32 completed the pre-test and 21 logged into Thermo-Tutor.

4.3 Evaluation Plan
An evaluation was planned to take place in two one hour sessions on the 11th and 18th of September.
Students would be divided among the two sessions according to the first letter of their surname; A–L would
attend the first session and M–Z would attend the second. Each student would attend only one session and
would be randomly assigned to either the control or experimental group. Each student would be given
instructions to explain how to log into ASPIRE and assigned them to either the control or experimental
group. A between-subjects evaluation design would be used; each student would remain in the group they
were assigned to for the entire evaluation. The control and experimental groups would use the control and
experimental interfaces respectively.

All students would complete a pre-test (see Appendix A.1) in the lecture on the 11th of November, and a
post-test (see Appendix A.2) immediately after the one hour evaluation session which they attend. Both the
pre-test and post-test would be administered on paper and would be of comparable complexity. Both tests
would be designed to evaluate understanding of the problem solving procedure and the formulae. Students
would also be required to complete a questionnaire (see Appendix A.4) as part of the post-test which
would ask each student to rank the system across five aspects, and also request comments and suggestions
for future improvement.

4.4 Revised Evaluation Plan
When the results of the pre-test were examined it became apparent that we would need to make changes
to the evaluation plan to obtain more meaningful results. The students achieved more highly than was
expected (see Table 4.1). The students had previously completed ENCH 2912, which also covered top-
ics relevant to Thermo-Tutor. We originally considered performing the evaluation as part of ENCH 291,
however this course occurred in the first semester (which would not leave sufficient time for development),
and the lecturer believed the level of expertise of the students in ENCH 292 would be more appropriate for
Thermo-Tutor.

The pretest included three questions (see Appendix A.1) for a maximum possible mark of 4. Students
could earn one mark for questions 1 and 2, and two marks for question 3. Half marks were also given for
small errors. Of the 32 students who completed the pre-test, just one student failed to solve question 1,
and 6 students made a partial error in question 3. However, 12 students made an error in question 2. The

1ENCH 292 information available at http://www.canterbury.ac.nz/courseinfo/GetCourseDetails.aspx?course=ENCH292
2ENCH 291 information available at http://www.canterbury.ac.nz/courseinfo/GetCourseDetails.aspx?course=ENCH291
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error rates for questions 1, 2 and 3 were 3%, 36% and 19% respectively. Due to the ceiling effect it seemed
unlikely that we would be able to measure a statistically significant difference between the problem solving
ability of the control and experimental group using a post-test similar to this pre-test. This problem was
not detected in time to change the post-test for the first evaluation session, however we decided to change
the post-test for the second evaluation session.

It was decided that the post-test should be changed to only examine the students’ knowledge and un-
derstanding of the formulae. This decision was made on the basis of the results from the pre-test. Although
the vast majority of students were extremely competent at solving these types of problems when they were
given the formulae, 36% were unable to reproduce the formulae, even when provided with alternatives in
multi-choice questions. It was decided that a new post-test (see Appendix A.3) should be devised which
would examine the students’ knowledge and understanding of the formulae.

4.5 Technical Difficulties
In addition to the ceiling effect that required the evaluation plan to be modified, technical difficulties were
experienced in both evaluation sessions. In the first evaluation session many students experienced an error
which caused the Thermo-Tutor applet to cease responding. This error was caused by students clicking the
“Continue” button on the webpage provided by ASPIRE. This button was not being used by Thermo-Tutor
and consequently had not been tested. Unfortunately several curious students were clicking this button
which caused the applet to wait indefinitely for a response from ASPIRE which would never arrive. Of
the 17 students who participated in the first evaluation session, 10 experienced this error at least once.
There was also another issue which caused some images in the applet to not render. This issue was related
to the environment in the lab where the evaluation was conducted; namely the specific version of Java
and Internet Explorer. Thermo-Tutor had not been thoroughly tested in this environment. These images
displayed units, constants and formulae (see Figures 2.3, 2.4 and 2.7). The fact that these images were not
always visible would negatively influence the usability of the interface. However, neither of these errors
prevented any student from being able to use Thermo-Tutor. These issues were corrected for the second
evaluation session.

Unfortunately the second evaluation session saw more severe technical issues. An error which ap-
peared to originate in ASPIRE itself caused the server to crash. The error caused a thread to exceed its
system memory limit. Allegro handled this error by locking the offending thread and spawning another.
This repeated several times before Allegro had consumed a large amount of system memory and ceased to
respond. This occured approximately 5 to 10 minutes into the second evaluation session. It took approxi-
mately 40 minutes to diagnose the issue and restart the web server. When the web server was finally back
online there was only approximately 5 minutes remaining in the evaluation session. It was decided that the
students had not used Thermo-Tutor for long enough to obtain meaningful results from either the post-test
or questionnaire. Consequently this data has been excluded from the analysis.

4.6 Results
Unfortunately the results which could be obtained from the evaluation were severely limited due to the
ceiling effect and several technical difficulties. The most useful results were obtained during the first
evaluation session. Log files were analysed to obtain some general statistics regarding the usage of the
tutor. The results from the Likert scales in the questionnaire were statistically analysed and the students’
comments were carefully interpreted. Finally, the student models were analysed to obtain learning curves
which show the rate at which students were learning. This section presents the results of this analysis.

4.6.1 Student Performance

Before examining other results it is useful to look at some general statistics regarding student performance
in the pre-test and in Thermo-Tutor. These factors are important because they could influence the inter-
pretation of the results in Sections 4.6.2 and 4.6.3. Table 4.1 shows some of these general performance
statistics along with scores from a T-Test to look for differences between the control and experimental
groups. It shows the mean and standard deviation for the control and experimental group for several fac-
tors. These results came from analysing the log files for the 17 students who took part in the first evaluation
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session. There were 7 students in the control group and 10 students in the experimental group. In order
from top to bottom these factors are; pre-test score, number of submissions made, number of successful cal-
culations performed, number of problems attempted, number of problems completed, number of problems
completed up to the final step (performing calculations) and the session length (in minutes).

Control Experimental p
Pre-test Score (%) 77.5 (23.8) 87.5 (15.0) 0.41

Submissions 75.9 (50.2) 53.1 (35.8) 0.33
Successful Calculations 12.3 (13.3) 3.0 (5.0) 0.12

Problems Attempted 1.7 (0.48) 3.2 (2.2) 0.07
Problems Completed 0.7 (0.95) 0.1 (0.32) 0.14

Problems Completed up to Final Step 1.0 (0.82) 0.4 (0.52) 0.12
Session Length (mins) 94.6 (17.6) 80.4 (28.6) 0.23

Table 4.1: Mean student performance statistics (standard deviations are shown in parentheses)

It is worth noting that there was no significant difference between the pre-test scores of the control and
experimental groups. This means that these two groups belong to the same population; so it is valid to
make direct comparisons between them.

It appears that the control group exceeded the experimental group in most areas. They seemed to
have solved more problems, successfully completed more calculations, completed more problems (both in
whole and up to the final step), and spent longer using the tutor. While none of these factors are significantly
different.

Interestingly, it appears the experimental group attempted more problems; and this difference is margin-
ally significant. This may have been due to the added difficulty of using the experimental interface. Perhaps
students found the experimental interface so difficult to use that they simply moved on to the next problem,
and did not try the final step for any of the subsequent problems they attempted. Some of the technical
difficulties such as images not rendering also seemed to affect the experimental interface more often. This
may have caused students to simply move onto the next problem after the first or second step. There was
evidently some confusion about how to use Thermo-Tutor; one student in particular solved only the first
step of every problem.

4.6.2 Questionnaire

Some of the participants were given a questionnaire intended to allow them to express their subjective
opinions of Thermo-Tutor. 10 students completed this questionnaire, 4 from the control group and 6 from
the experimental group. Table 4.2 shows the mean results from this questionnaire for both the control and
experimental groups (standard deviations are shown in parentheses). The first two items in this table were
asked as questions, the student was asked to give a ranking for the final three factors (see Appendix A.4).
For each question and ranking students were asked to select a value on a 5 point Likert scale, with one
representing poor/low, and five representing excellent/high.

Question Control Experimental U p
Overall quality of Thermo-Tutor 3.50 (1.05) 3.63 (0.48) 11 0.41

Quality of feedback provided by Thermo-Tutor 3.25 (1.08) 2.75 (0.96) 6 0.08
Mental effort required 3.67 (0.52) 3.00 (0.82) 8.5 0.76

Problem difficulty 3.17 (0.75) 2.75 (0.96) 12 0.5
Enjoyment 3.25 (0.76) 3.25 (1.50) 8.5 0.22

Table 4.2: Mean Likert scores for Thermo-Tutor and Mann-Whitney U Test results (standard deviations
are shown in parentheses)
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Table 4.2 also shows the results from performing a Mann-Whitney U Test for each question. For all
results, there were 4 students in the control group and 6 in the experimental group (N1 = 4 and N2 = 6).
None of the differences are significant at the p=0.05 level. However, there is a marginally significant dif-
ference between the responses from the control and experimental group for the second question (p=0.08).
It appears that the experimental group found the quality of the feedback they received to be lower. This
is an interesting result because the level of feedback did not differ greatly between the control and exper-
imental versions of Thermo-Tutor. The experimental version was actually capable of providing slightly
more feedback regarding errors that were not possible in the control version. These errors are possible in
the experimental version because of the added input flexibility it provides (see Section 3.4). However, it
appears that the students who used the experimental version felt they still needed more help.

These statistics should be interpreted with caution. It is important to remember that only 10 students in
total completed the questionnaire. I am only willing to draw the conclusion I mentioned above because it
corresponds with the observations I made during the evaluation period. These statistics should not be used
to draw definite conclusions.

These results vary greatly, but seem to be somewhat positive. The students were also asked three open-
ended questions to encourage them to share their thoughts about the strengths and weaknesses of Thermo-
Tutor and what they thought could be improved. Some general thoughts, comments and suggestions were
expressed in the answers to these questions:

• Several students found the feedback helpful. One student liked that Thermo-Tutor informed him of
errors in his diagram. Another found the feedback was simple and direct for small errors.

• Several students in the control group found it useful to have all the formulae they needed given to
them.

• Several students found it enjoyable and easy to draw diagrams in Thermo-Tutor
• Several students enjoyed solving these problems on a computer because of added interactivity, ease

of use and for the simple fact that they enjoy using a computer.
• Several students found the feedback was not very helpful. This made it difficult for them to locate

and correct their errors. One student suggested that Thermo-Tutor should indicate the order in which
variables should be calculated.

• Several students indicated that there is a need for more help with using the tutor. One student sug-
gested there should be a brief online tutorial.

• One student in the experimental group found it difficult to type formulae and expressions. They
suggested that the tutor should help with syntax.

4.6.3 Learning Curves

Learning curves allow us to analyse whether some measurable objects are being learnt [48]. We can use
learning curves to measure the rate at which constraints are being learnt. Learning curves plot the number
of times the object (constraint) is relevant against the proportion of times it was incorrectly used (violated).
If the object in question is being learnt, we should be able to obtain a good fit to an exponential curve.

Due to technical difficulties, only the results from the first evaluation session can be analysed. These
results came from students using the system for approximately an hour and a half on average. It would
usually take longer than this to gather sufficient data to plot accurate learning curves. Therefore, the results
of this analysis should be interpreted with caution. Figures 4.1 and 4.2 show the learning curve obtained
for the control and experimental group respectively.

Both the control and experimental groups show a moderately good fit to an exponential curve (both
R2=0.74). The learning rates of the control and experimental group appear to be nearly identical (as shown
by the slope). The height of the curves seem to suggest that the experimental group made slightly more
errors throughout the evaluation period. However, this difference is not significant, and the data points are
very similar.
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Figure 4.1: Learning curve for the control group

Figure 4.2: Learning curve for the experimental group



5 Discussion and Future Work

5.1 Possible Improvements

From the comments expressed in the questionnaire, and my personal observations of students during the
evaluation and their log files, there are a number of things which require improvement.

Provide more detailed feedback

Some students found the feedback that Thermo-Tutor provided while making calculations was insufficient.
This is primarily because the set of constraints that describe this part of the problem solving procedure are
still quite simple. For this final step Thermo-Tutor makes no attempt to model the overall process; it only
models each calculation in isolation. So it is not able to help the student decide which property to calculate
next. Each calculation is also modelled in terms of formulae and expressions, as opposed to variables and
values. So Thermo-Tutor is not able to provide detailed feedback regarding what part of the calculation is
wrong. It is only able to inform the student that one or more of the formula, expression, result or unit is
incorrect.

Provide more assistance to novices

It seems from the statistical analysis of the Likert scale results that the students who used the experimental
interface felt they needed more help. Providing more detailed feedback, as described above, would help
alleviate this problem to some degree. Another way to alleviate this problem would be to provide more
assistance to novices. This would require two challenges to be overcome. Firstly, we need some way
of classifying the expertise of a student. ASPIRE maintains a student model that would help with this.
Secondly, we need to decide how much assistance to provide given some level of expertise. One possible
way may be to allow “novices” to use the control interface, and require “experts” to use the experimental
interface. This could occur on a per-problem basis by examining the student’s expertise and the problem’s
difficulty. Alternative, the interface could adapt more dynamically. For example, after a certain number of
incorrect attempts we may allow the student to revert to the control interface (based on the assumption that
they are a “novice”).

Accept a wider range of solutions

Some students in the experimental group found that Thermo-Tutor would not accept their perfectly valid
solution for calculating some property. This was due to students using solutions which Thermo-Tutor
simply did not accept. Thermodynamics is a vast topic; there are often many different ways of performing
some calculation. Thermo-Tutor was designed to accept only solutions which students were likely to
produce given what they were taught in the course. However, some students used valid problem solving
techniques that were not considered during development of Thermo-Tutor. There may be some solutions
which should be discouraged for pedagogical reasons, however it is unlikely that these techniques should
be simply regarded as incorrect in the same manner as a truly incorrect solution. This is a greater issue in
the experimental version, because there are many valid formulae that are not supported by the system. If
the student enters one of these formulae in the experimental version, they are simply informed that they
are incorrect. It is not clear to the student whether this means their solution is incorrect, or simply not
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supported by the system. In the control version, these formulae simply cannot be selected; so it is clear to
the student what formulae are valid.

Provide increased leniency

Some students in the experimental group found that Thermo-Tutor was very particular about the format
it required when calculating some property. These students would perform a calculation which was se-
mantically identical to one which Thermo-Tutor was aware of. However, because of some trivial syntactic
difference, Thermo-Tutor would not accept this solution. Some work has been done to allow Thermo-Tutor
to be lenient to some extent. Solutions with any amount of redundant parentheses will be accepted, and
many equivalent ways of expressing solutions will be accepted. However, there are many more equivalent
ways of expressing mathematical expressions which will not be accepted as correct. Detecting that two
mathematical expressions are equivalent is non-trivial in general.

Provide a wider variety of problems

Several students became bored with the type of problems that Thermo-Tutor currently supports. This is
likely to be due to the skill level of the students that took part in the evaluation. The lecturer and tutor were
surprised at the level of competency the students demonstrated in these types of problems. It is believed
that Thermo-Tutor may be more appropriate for first year students. However, it would be good to support
a wider range of problems in Thermo-Tutor. Any significant increase in the complexity of the problems
supported by Thermo-Tutor is likely to require alterations to the ontology and constraint base. This would
require a significant amount of work, but would increase the value of Thermo-Tutor greatly.

5.2 ASPIRE
The secondary goal of this research was to evaluate the usefulness of ASPIRE as a general purpose author-
ing system for constraint-based ITSs. The primary advantage of using ASPIRE is that it will generate the
domain model. Therefore to evaluate ASPIRE’s overall usefulness we should examine its ability to gen-
erate this domain model. The domain model of constraint-based ITSs is modelled by a set of constraints
which describe the domain concepts. ASPIRE’s most difficult and important task is to generate this set of
constraints. In order to evaluate the quality of the domain model ASPIRE generates, we should examine the
quality of these constraints.

5.2.1 Generating the Domain Model

For the control version of Thermo-Tutor, ASPIRE was able to generate all the necessary syntax constraints.
However, some syntax constraints had to be discarded. Of the 148 syntax constraints that ASPIRE gener-
ated, 8 were discarded leaving a total of 140 syntax constraints in the control version of Thermo-Tutor.
These syntax constraints were invalid because of the substeps I included to make the definition of the ideal
solution more convenient (see Section 3.2). These constraints could have been adapted to work correctly
for the substeps, however they were not necessary because the errors which they were designed to catch
were not possible with the interface of Thermo-Tutor. Several other syntax constraints which were neces-
sary were adapted to work correctly with the substeps. Finally, all the feedback messages were rewritten,
as is intended in ASPIRE’s authoring process.

ASPIRE was also able to generate a sufficient set of semantic constraints for the first and second steps
in Thermo-Tutor. The semantic constraints for the third step of Thermo-Tutor required the most substantial
changes because of the way I chose to define the ideal solution. However, all the semantic constraints
underwent significant changes, including those for the first and second steps, in order to provide more
specific feedback.

ASPIRE generated 142 semantic constraints. Of these 45 were removed because they were unsuitable
for the way I chose to define the ideal solution, and 32 were removed because they were overly spe-
cific. These overly specific constraints were the result of insufficient data (ideal solutions) to allow the
constraint-induction algorithm to fully generalise. This left a set of 65 semantic constraints, which under-
went significant changes to make the 93 semantic constraints in the final version of Thermo-Tutor. The
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changes that were made to the original 65 constraints varied greatly, and the process was by no means
straight forward. Consequently, it is difficult to succinctly describe these changes. I will attempt to give an
overview of the more significant types of changes that were required.

In final set of 93 semantic constraints, 69 in some way resembled constraints that ASPIRE generated.
Of these 69, 6 were altered in a simple fashion to provide more specific feedback, 15 were either altered
trivially or were based on existing constraints, and 48 made use of domain functions (see Section 2.1.2).
In general, constraints which make use of domain functions could not be said to resemble constraints
which ASPIRE generated. However, I used domain functions simply to apply the constraints as a whole
in a different way, as opposed to fundamentally change the nature of any individual constraint. So these
constraints were heavily based on those generated by ASPIRE; domain functions were required simply to
change the way they were applied. This was necessary because of the way I chose to define the ideal
solution. The remaining 24 constraints that make up the total 93 are considered entirely new. These 24
constraints are fairly simple, but they do not resemble any constraint which was originally generated by
ASPIRE.

Development of the experimental version of Thermo-Tutor began from the completed control version.
All of the alterations required to the constraints were very simple. So there was no attempt to generate the
constraints for the experimental version. Instead I will describe the differences between the final sets of
constraints in the control and experimental versions.

The experimental version of Thermo-Tutor contains the same set of 140 syntax constraints as the control
version. The set of 87 semantic constraints in the experimental version are very similar to the 93 in the
control version. From the 93 in the control version 6 were removed, 24 were trivially altered, and 12 had
feedback altered to make up the 87 semantic constraints in the experimental version. The constraints which
were removed were related to the “rearrangement” step which the experimental version excludes. Trivial
alterations were required to 24 constraints because the representation of the ideal solution was slightly
different for the third step of Thermo-Tutor. Finally, some feedback had to be altered to provide meaningful
feedback for the interaction mode provided by the experimental version; formulae are “entered” as opposed
to “selected”.

5.2.2 Causes of these Issues

It is clear from the previous section that the domain model which ASPIRE generated was not entirely
suitable for this domain. I believe there are two main reasons why this was the case. Firstly, the way
I chose to define the ideal solution required many alterations to the constraints. Secondly, I believe the
ontology which I developed for the third step of Thermo-Tutor was not entirely suitable for this domain.

Many of the changes to the syntax and semantic constraints were required because of the way I chose to
define the ideal solution. This approach was described in more detail in Section 3.2. The problem with this
approach is that it rendered false one of the fundamental assumptions that ASPIRE makes. ASPIRE assumes
that the student’s solution should match the ideal solution. ASPIRE generates constraints to compare the
ideal solution to the student solution and vice versa. However, because of the way the ideal solution is
defined, comparing the ideal solution to the student solution is not possible. This is the primary reason why
many constraints were discarded. This assumption is also evident in the way ASPIRE applies constraints,
or rather in the behaviour of the pattern matching functionality provided by ASPIRE. The way this pattern
matching works was the primary reason why so many constraints required domain functions to operate
correctly.

I believe that the ontology which I developed for the third step of Thermo-Tutor was not suitable
for this domain. I believe the ontology was too simple; it was not defined with the appropriate level of
granularity. I believe a more detailed, fine-grained ontology would allow ASPIRE to generate more specific
constraints which could provide more detailed feedback. I defined the ontology at the level of formulae
and expressions, as opposed to the level of variables and values. This meant that ASPIRE was only able to
generate constraints which check formulae and expressions as a whole. More specific feedback could be
provided if these constraints instead checked the smaller units of variables and values.
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5.2.3 ASPIRE’s Prospective Audience

The previous setions have demonstrated several difficulties that would be common when developing a
constraint-based ITS with ASPIRE. It seems unlikely that ASPIRE would allow a domain expert with no
programming expertise to develop an ITS for a domain as complex as thermodynamics. However, I believe
there are at least two types of people that ASPIRE would be suitable for.

I believe ASPIRE would be suitable for domain experts with little or no programming expertise provided
they are developing an ITS for a suitable domain. This does not necessarily mean the domain has to be
very simple. The domain could contain many concepts, it is more important for the domain and task to be
suitable for ASPIRE. A task which is suitable for ASPIRE could have several correct solutions. Provided that
these solutions can be represented, and are distinct in that the student’s solution should match one of them as
a whole, ASPIRE will be able to generate constraints for this task. Provided the task is suitable, the primary
limiting factor would be the domain expert’s ability and understanding of domain modelling. While ASPIRE
does not require programming expertise, it does require an understanding of domain modelling in order
to develop the ontology. Provided a suitable ontology can be devised, the remaining steps in ASPIRE’s
authoring process are relatively trivial.

I believe ASPIRE is still useful in more complex domains which may not be entirely suitable. Devel-
oping an ITS with ASPIRE for such a domain will require the assistance of someone with programming
expertise. However, ASPIRE simplifies the task for the programmer, and allows the domain expert to take a
more active role in development.

ASPIRE provides all the same advantages to the programmer as a shell such as WETAS. It also provides
the programmer with a basic ITS which can be improved. While developing Thermo-Tutor I chose to
bypass some functionality provided by ASPIRE. Nonetheless, ASPIRE provided the majority of what I
required. In the areas which ASPIRE fell somewhat short, it did provide a foundation from which I could
build upon. Moreover, I was able to bypass certain functionality fairly easily, which shows the versatility
of ASPIRE. ASPIRE allows a skilled developer to make use of its many strengths, while not being held back
if certain features are not appropriate. I have no doubt that ASPIRE enabled me to achieve more during this
project.

ASPIRE also allows the domain expert to take a more active role in development. In complex domains
which require the assistance of a programmer it is likely that the domain expert will still be able to complete
a large amount of the work themselves. For complex domains, the programmer will be required to develop
the interface and edit the constraints, and may also be required to assist with developing the ontology.
However, the remainder of the steps in ASPIRE’s authoring process could still be completed by the domain
expert.



6 Conclusions

Learning has always been a fundamental part of the human experience, and it continues to be important
in modern society. The importance of learning and the need for more effective learning methods is likely
to increase as we move into an age of information and technology. Many disagreements among experts in
the fields of education and psychology remain, however research has produced some generally accepted
results. It seems clear that the current situation in education falls desperately short of ideal, and correcting
these issues will require fundamental changes in the way education is conducted in our society.

The educational needs of our society seem likely to increase because of increased reliance on informa-
tion and technology. Many believe that meeting these needs will require the application of the technology
itself. Computer-Based Education (CBE) presents an alternative which could help solve some of the prob-
lems in education today and in the future. Intelligent Tutoring Systems (ITSs) are among the most sophisti-
cated applications of CBE in common use today. ITSs have the potential to provide a customized, adaptive
educational experience that is pedagogically equivalent to personal one-to-one tutoring; known to be the
most effective form of instruction. Significant research has been devoted to increasing the effectiveness of
ITSs in various ways.

This report presents an investigation into how the interaction style of the interface influences learn-
ing in an ITS. For this purpose we used an ITS for introductory thermodynamics called Thermo-Tutor.
This required the development of the standard version of Thermo-Tutor to be completed, as well as an
experimental version. The standard version required input via selection, whereas the experimental version
required input via typing.

The design of the experimental version of Thermo-Tutor was based on theory from psychology and
cognitive science. This theory was discussed and then applied to justify the design of the experimental
interface. The theories which the discussion focussed on were the generation effect, cognitive load theory
and the assistance dilemma.

There were three aims of this research. The primary aim was to evaluate the effectiveness of two
interfaces which employed different modes of interaction. I also aimed to evaluate the effectiveness of
ASPIRE as an authoring tool, and contribute to the growing collection of ITSs.

The relative effectiveness of the two interaction modes in terms of learning remains unclear. Technical
difficulties and an inappropriate group of participants severely limited the inferences that could be made
from the results of the evaluation. Comparison between pre-test and post-test results could not be made.
However, the results of student performance in the tutor and questionnaires were examined, and learning
curves were plotted. Obtaining more conclusive results would require another evaluation to be performed
with a more suitable population and implementation.

The development of Thermo-Tutor has demonstrated some of the strengths and weaknesses of AS-
PIRE. Some limitations of ASPIRE were evident during development. However, several strengths were also
obvious, and this research also helped to identify who is likely to benefit from ASPIRE.

Development of Thermo-Tutor was generally successful because participants in the evaluation were
learning. However, this research also helped to show several ways in which Thermo-Tutor could be im-
proved. After the most crucial of these changes are completed, an evaluation could be conducted to obtain
the results which could not be gathered during this project. Despite several difficulties in obtaining the
results related to the primary aim of this research, the development of Thermo-Tutor using ASPIRE was
successful.
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