
Making Haskell .NET Compatible

�����������
	����
����������	����
����������� �������
 !��� "����$#%� �'&(�����)���
�����+*�����&

��,��-� #.����,/���$��,/021��
3546�7�/8 ����9

Liam O’Boyle:<;�=�>�?�@�ACB�DFE�G/HIBKJML�;�HIBCG/NO=�D�NQP�JR;FL�JSHFT
U D�V�G�NQW�X<AZY�N.[]\^N.J]_`X<a�G�:cbdG/N�NeP



Abstract

Microsoft’s new .NET platform makes use of tools, built in a wide variety of languages, all running
on one virtual machine, the .NET Common Language Runtime (CLR). Many existing languages are to
be made compatible with the .NET CLR, in order to make the platform more appealing to experienced
software developers, and new languages are also being developed specifically for the system. As one
of the most popular functional languages, it is intended that Haskell 98 be made .NET compatible.
The approach taken in this project involves a translation of the Glasgow Haskell Compiler’s internal
language, GHC Core, to Mondrian Core, and internal language of the Mondrian compiler, to achieve
Haskell compatibility with the CLR. A detailed description of the development of a tool to achieve
this translation is described also.



Contents

1 Background 4
1.1 Purpose of the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Microsoft .NET and the Common Language Runtime . . . . . . . . . . . . . . . . . 4
1.4 Haskell 98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 The Glasgow Haskell Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 The GHC Core Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Mondrian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 The Mondrian Core Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Approach 8
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Yacc and Bison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Happy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 JavaCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 ANTLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Modifications to the Original GHC Core Grammar . . . . . . . . . . . . . . 10
2.3.2 Parser Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Translation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Still to be Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Users Guide 15
3.1 Guide to Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Tools Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Installing Core2MC Manually . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Using Core2MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A C Quicksort 17

B Grammars for Mondrian Core and GHC Core 19
B.1 Grammar for Mondrian Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B.2 Modified Grammar for GHC Core . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



C Project Source Code 24
C.1 Core2MC.jjt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
C.2 Core2MCDumpVisitor.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2



List of Tables

2.1 The Basic Type (bty) Non-Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Literal (lit) Non-Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The Atomic Expression (aexp) Non-Terminal . . . . . . . . . . . . . . . . . . . . . 11
2.4 The Expression (exp) Non-Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 The Kind (kind) Non-Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 GHC Core Literals to Mondrian Core Literals . . . . . . . . . . . . . . . . . . . . . 13

3.1 Tools Required for Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B.1 Mondrian Core Grammar pt 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.2 Mondrian Core Grammar pt 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.3 GHC Core Grammar pt 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
B.4 GHC Core Grammar pt 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



Chapter 1

Background

1.1 Purpose of the Project

Microsoft’s new .NET platform (see Section 1.3, Page 4) incorporates a variety of languages with
which to develop software executable on the .NET Common Language Runtime (CLR). To be .NET
compatible, a language must compile to CLR byte code; this requires either modifications to existing
compilers or the creation of entirely new compilers for these languages. Microsoft would like to
have Haskell, one of the most popular functional languages, compatible with the .NET platform.
Modification of an existing compiler has been done before (see Section 1.2), but these modifications
are difficult to update when a new version of the compiler is released, or when a language is updated.
The alternative, a new compiler for Haskell, would be a significant task. Fortunately several tools exist
already that can greatly simplify the development of this compiler, specifically the Glasgow Haskell
Compiler and the Mondrian compiler, which are discussed further on.

1.2 Previous Work

1.3 Microsoft .NET and the Common Language Runtime

The .NET platform is intended to facilitate the development of interactive, web based systems, bring-
ing together remote systems using intelligent clients, servers and services communicating through the
internet. Information about the goals of the .NET project can be found at http://www.microsoft.com/net/.
All of the software required to provide these services will be run on the .NET virtual machine, known
as the Common Language Runtime. A large variety of languages are planned to run on the CLR, to
make it as simple as possible for experienced developers to create .NET compatible software. There
will also be several new languages, such as C# and Mondrian, designed specifically for the .NET
platform.

One of the major aims of the .NET platform is to facilitate communication among programs,
regardless of language (see Levy (2002)). By compiling languages to run on the same platform, all
languages, by default, will use the same type system, exceptions, calling conventions etc., making
interoperability much more simple.

There are many advantages in compiling code to an intermediate form, executable on a virtual
machine (VM), rather than native code. Meijer & Gough (2002) lists several, including

� Portability - much fewer translators are required; whereas compilation to native code requires



one translator per language per platform, compilation to an intermediate code require one trans-
lator to intermediate code per language plus one translator from intermediate code to native for
each platform.

� Compactness - Intermediate code is often much more compact than source code.

� Efficiency - the execution platform can use its knowledge of the underlying platform to improve
software performance.

� Security - Higher level intermediate code is more amenable to security and type constraints than
low level binaries.

� Interoperability - By sharing a type system and a runtime environment providing common ser-
vices such as garbage collection, threading and security, interoperability between languages is
greatly improved.

� Flexibility - High level code is more amenable to analysis such as reflection, serialisation, type
browsing etc.

There are several similarities between the Java Virtual Machine (JVM) (see http://java.sun.com),
the most popular VM in use at the moment, and the CLR. Similarities include a design intended to
work well with OO languages, a similar code density in compiled code and use of a byte code (1
byte per instruction). The most significant difference between the two systems is that the CLR was
designed to support multiple languages, while the JVM was intended to to support only Java; the
JVM lacks the primitive type support necessary for the efficient implementation of many languages,
and provision for unsafe type features1 (Meijer & Gough 2002), as they are not necessary for Java
interpretation. The current version of the CLR, 1.0, contains some support for a wider range of prim-
itives, and support for unsafe types and their conversion, making it a much better candidate for a
multi-language VM. CLR 2.0 is currently under development and is expected to provide improve-
ments, although exactly what it will contain is not publicly available yet. Another advantage of the
CLR over the JVM will be its intended support of polymorphic types, where groups of types can be
treated in the same way (Kennedy & Syme 2002); it is not clear when this will be included, however.
The concept of polymorphism is explained more fully in the following section, Haskell 98.

For a detailed comparison of the two VMs see Gough (2002), and see (Meijer & Gough 2002,
Kennedy & Syme 2002) for more detailed information about the CLR itself.

1.4 Haskell 98

Haskell is a polymorphically typed, lazy, purely functional language, the current version of which
is Haskell 98. Haskell is one of the most popular functional programming languages, with usage in
industry and versions of it are commonly used for teaching functional programming concepts (most
notably Hugs - see http://www.haskell.org/hugs). Functional programming has several advantages
over both procedural and Object Oriented programming. They are, on the whole, much more concise
than their procedural and OO counterparts, as many complex algorithms can be specified in a much
more simple manner.

Complex algorithms written in functional languages also tend to be much clearer; an extreme
example of this is the quicksort algorithm, which sorts a list of objects, by splitting the list in to three

1Such as pointers, intermediate descriptors and unsafe type conversions

5



smaller lists, one containing a “pivot” value, one containing all values less than that value and one
containing all values greater than that value, and then applying itself to each of the resulting lists. The
source for a Haskell version of quicksort is shown here.

���������
	�� 
�	��
����������������������
������������������������ ���"!�!
	#����!�!����$����������������%��&���&���
'�( ���&�

���$�)�������&��� 

	+*-,.*0/�12���435*6/2���
���$�)����%������&���2

	+*-,.*0/�12���435*67�
����

The C source code is shown in the appendix A, page 17, as it is much longer (see the first advantage
of functional programming!). The Haskell code is reasonably simple to understand with a very basic
understanding of Haskell; the ++ operator concatenates the three lists together, the elts lt x is the
list of values that are in list xs, but less than the pivot value x (this definition is much the same as
one would see in a lambda calculus, upon which Haskell is based) and elts greq x is those values
greater than or equal to x. The C example does exactly the same thing, but in expressing the idea the
programmer also has to handle exactly how the list is traversed, how the pivot is chosen, and maintain
pointers to their current location in the list. This simplicity in expressing complex algorithms means
that there is much less room for programmer error as well as more easily understood code.

Functional languages also provide higher order functions, where functions can be treated in the
same way as variables in a procedural language; they can be passed as arguments to functions, returned
from functions stored and so forth.

Haskell’s polymorphic typing allows constraints on the type of arguments upon which a function
can operate, instead of the specific type of an argument. For example, the Haskell quicksort shown
above will operate on any type which can be compared with the 8 and 9 operators, while the C
version can only operate on integers. This makes the code shorter again and much more reusable, as
one algorithm can work with many types.

Another advantage of Haskell is lazy evaluation, where only evaluation required to produce the
final result is performed, which can avoid errors, and evaluation is not performed until it is needed,
which can reduce memory requirements. For example, a function could use an infinite list, but only
the elements of the list that were used would ever be evaluated; in most procedural or OO languages,
even the definition of such a list would be impossible.

For a complete description of the Haskell language, see Jones, Hghes, Augustsson, Barton, Bou-
tel, Burton, Fasel, Hammond, Hinza, Hudak, Johnsson, Jones, Launchbury, Meijer, Peterson, Reid,
Runciman & Wadler (1999).

1.5 The Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC) is a robust, fully-featured, optimising compiler and interactive
environment for Haskell 98. GHC compiles Haskell to either native code or C. It also implements
numerous experimental language extensions to Haskell 98, but this is not of great concern to this
project. Additionally, the GHC was designed with the intention that it be easy to make use of portions
of the compiler, with user developed extensions replacing certain components; in this case, we will be
replacing the final compilation process with a translation and the Mondrian compiler.

6



1.6 The GHC Core Language

GHC Core is an internal language of the GHC. It is somewhat similar to a subset of standard Haskell,
but with explicit type information added. The GHC parses Haskell and creates GHC Core code, with
full type information. This is then rewritten by the optimiser, before eventually being written to either
C or executable code. The GHC can be forced to output core by including the 1��������&1��$���&� parameter
when compiling code.

This means that we can use the GHC to type check, parse and optimise the Haskell code, as well
as allowing it to reduce the Haskell to GHC Core, which is lower level, so more similar to Mondrian
Core (see Section 1.8, Page 7).

The details of GHC Core will be discussed in more depth in Section 2.3, Page 10.

1.7 Mondrian

Mondrian is a new functional language, currently being developed at Canterbury University, New
Zealand. It shares many of the advantages of common functional languages, such as higher order
functions and lazy evaluation. Additionally, as it is being specifically designed to run on the .NET
CLR, it is much more adept at dealing with OO classes, threads and exceptions (see Section 1.3, Page
4) than any other functional language currently available. The .NET support for interoperability makes
Mondrian very useful; with its ability to handle OO types, it can easily be used to write the complex
algorithms for other programs, while leaving areas like GUI implementation to other languages, such
as C#, which are better suited to such tasks. The .NET CLR also makes it possible to implement and
use libraries, so that the language in which the library, and the language which is calling the library
don’t matter.

The Mondrian compiler compiles Mondrian to Mondrian Core (See Section 1.8, Page 7), which
is then compiled into C#. The .NET C# compiler is finally used to create .NET byte code. At present
Mondrian does not require explicit definitions of type; instead they are inferred from the context. This
simplifies the task of translation, as it allows us to more or less ignore types in the translation from
GHC Core to Mondrian Core.

1.8 The Mondrian Core Language

Like the GHC, the Mondrian compiler also makes use of an internal language, Mondrian Core, which
it can accept from external files instead of pure Mondrian. Mondrian Core is, by design, more simple
than the GHC Core language, as Haskell is a higher level language than Mondrian. Mondrian Core
itself is quite similar to the original Mondrian source, and some understanding of it can be gained
by reading the documentation available on the Mondrian website (Perry 2001). Also provided in
Appendix B.1, page 19, is a grammar for Mondrian Core, which is derived from the current source
of the Mondrian compiler; as Mondrian is still in development, no formal definition of the grammar
is currently available, and this grammar may not be valid for long. Please see the Mondrian web site,
http://www.mondrian-script.org, for the most up to date version of the Mondrian system. As with the
GHC Core language, further explanation of Mondrian Core will be given in Section 2.3, Page 10.

7



Chapter 2

Approach

2.1 Overview

The plan is to use the GHC to parse, type check and optimise the code (see Section 1.6, Page 7), and
output the result in GHC Core format. This output will be piped into a tool which will parse the GHC
Core code and convert it into the Mondrian Core. The generated Mondrian Core will be passed on to
the Mondrian Compiler, which will then compile it to C#, which can be fed to the .NET C# compiler
and finally be compiled into .NET CLR byte code. This process is shown in Figure 2.1.

Haskell
Source

Translation
Tool

Glasgow
Haskell

Compiler

Mondrian
CompilerC# Compiler.NET Byte Code

Figure 2.1: Compilation Steps in the Proposed System

2.2 Parsers

Before implementing a parser for the GHC Core, it was necessary to look into some of the available
parser generators; it was a given that a parser generator would make a more efficient and less error
prone parser than myself. There are many available parser generators, of which several were consid-
ered, including Happy, Yacc/Bison, JavaCC, and ANTLR as these were well known and I have had
some experience using similar tools before.



2.2.1 Yacc and Bison

Bison and yacc are both C/C++ LALR(1) parser generators, available on most Unix and linux systems.
Bison is simply the GNU implementation of yacc, and shares most of the same features. As the GHC
Core language is describable by a LL(1) grammar (although the grammar supplied in Tolmach (2000)
is not, for the purposes of clarity), a LALR parser is not necessary; there seems to be no clear verdict of
which is the better parser to use in this situation. Two factors put bison/yacc out of consideration First,
the lack of a a tree parser, allowing a more intelligent parsing of GHC Core; this feature is available in
both JavaCC and ANTLR, and its lack would have made the task of translation much more difficult in
a bison/yacc solution. Second, there was no support for a lexical analyser1 within the parser generator;
while it is possible to add this functionality through other devices (the most obvious being lex/flex, see
http://www.gnu.org/manual/flex-2.5.4/html mono/flex.html), this was another complication. More in-
formation about bison/yacc can be found using the Unix/linux man pages (����� * � � � and �����

��� �$� � )
or at http://campuscgi.princeton.edu/man?yacc or http://www.gnu.org/manual/bison-1.35/bison.html
for yacc and bison respectively.

2.2.2 Happy

Happy is a LALR(1) parser generator written in Haskell, which has the advantage of being .NET
compatible by default (given the eventual completion of this project). It shares most of the same
features and flaws as yacc/bison, including the lack of a tree parser and lexical analyser. For these
reasons, Happy was not chosen for the development of the parser. For more information about Happy,
please see http://www.haskell.org/happy.

2.2.3 JavaCC

JavaCC is a very thorough set of tools for parser generation. It develops LL(k) parsers in Java,
which will be supported by .NET. It can also create complete parse trees, with support for tree ma-
nipulation, such as putting nodes back on to the stack to be scanned again, renaming nodes and
suppressing nodes for some non-terminals, which is useful when translating GHC Core to Mon-
drian Core. There is also very good error handling support, although this should not be a prob-
lem, as the code produced by the GHC will always be syntactically correct; however, it will be
useful to include until full Haskell support is implemented. Also, the documentation provided is
very thorough and a repository of real language examples, including grammars of common languages
such as Java, is also available at http://www.cobase.cs.ucla.edu/pub/javacc/. Finally, JavaCC is ca-
pable of creating a lexical analyser along with the parser. These advantages meant that the final
choice was to develop the parser using JavaCC. For more information about the JavaCC system, see
http://www.webgain.com/products/java cc/.

2.2.4 ANTLR

ANTLR, ANother Tool for Language Recognition, is capable of generating parsers in both C++ and
Java. Like JavaCC, it creates LL(k) parsers, which are sufficient to parse the GHC Core language,
it can create tree parsers, has some support for error handling, and can also create a lexical analyser
within the parser. The level of documentation available is not as good at that available for JavaCC,

1A lexical analyser breaks down the input into tokens, rather than a simple stream of characters, and is necessary in
almost all language parsers.

9



and the number of examples available is very limited. Overall, the capabilities of ANTLR seem to be
much the same as those of JavaCC, but clarity in the documentation and the availability of example
grammars gave the edge to JavaCC. For more information about ANTLR, see http://www.antlr.org/.

2.3 Translation

2.3.1 Modifications to the Original GHC Core Grammar

The choice of JavaCC for parser development required that the grammar be converted to LL(k), prefer-
ably LL(1) for the purposes of speed and computational efficiency. While most of the grammar avail-
able in the formal definition of GHC Core, given in Tolmach (2000), was LL(1) there were some areas
that required alteration to allow either LL(k) or LL(1) parsing. For a full listing of the grammar, please
see Tolmach (2000), as only the relevant sections will be reproduced here. A complete listing of the
modified grammar can be found in Appendix B.2 on page 21. Please note that the grammar here uses
the same rules as the Mondrian Core grammar in Appendix B.1; please refer to the description there.

There was only one case where left recursion2 in the original grammar; this was for basic types
(Table 2.1).

Original Version
bty = aty�

bty aty
Modified Version
bty = � aty � +

Table 2.1: The Basic Type (bty) Non-Terminal

The removal of the left recursion was simple; by inspection it is possible to see that the original
grammar will produce one or more atys, and this can be expressed in a non-left recursive way.

A significant number of changes were required to reduce the rest of the grammar to LL(1) though;
changes were made to atomic expressions, expressions, literals and kinds.

The expansion of the lit (Table 2.2) was modified, so as to remove the first open bracket from
it; this was mainly for convenience in the alterations to the atomic expressions, where it was causing
lookahead difficulties. By removing it from the lit, this could be avoided. A second change avoided
lookahead problems within the lit expansion itself. For clarity, the definitions of integers and rational
numbers both began the same way; a simple change makes the . � digit � + optional. The common
end, “ ��� ty � ”, was only expressed once, for the sake of brevity.

The atomic expression (Table 2.3) had lookahead problems for two reasons. First, the qualified
data constructor and the qualified variables sometimes have the same start, a mident, although this was
optional for the variable. This was solved by moving the mident from the qdcon and qvar expansions
into the aexp expansion, and allowing it to be followed by an unqualified data constructor or variable.
Note that no modifications were made to the definitions of qvars and qdcons; the grammar just uses
unqualified cases in the aexp expansion instead. To cover the situation where a qvar does not have
a qualifying mident, the aexp was also allowed to expand simply to a var. The second problem was
caused by lits having a bracket at the start or each expansion, and the nested expression expansion of

2Where a non-terminal character’s expansion has itself as the first non-terminal, e.g. A - � A B � B

10



Original Version
lit = � [ 1 ] � digit � + ��� ty �

� � [ 1 ] � digit � + � � digit � + ��� ty �
� � � char

� ��� ty �
� � ��� � char � ��� ��� ty �
Modified Version
lit = ( [ 1 ] � digit � + [ � � digit � + ]� �

char
�

� ��� � char � ���

) ��� ty �

Table 2.2: The Literal (lit) Non-Terminal

aexp having brackets also. This was fixed by modifying lit as described above, and moving it into the
brackets as shown below.

Original Version
aexp = qvar�

qdcon�
lit� � expr �

Modified Version
aexp = mident � ( dcon

�
var )�

var� � ( lit
�
expr � )

Table 2.3: The Atomic Expression (aexp) Non-Terminal

The modification to expressions (Table 2.4) was very minor, so only a partial listing of the ex-
pansion is given below. Each of the other alternatives has a unique, terminal character beginning its
expansion, causing no lookahead problems.

Original Version
exp = aexp�

aexp � arg � +
Modified Version
exp = aexp � arg �

Table 2.4: The Expression (exp) Non-Terminal

The original version shows an atomic expression, by itself, and an application, which is an atomic
expression followed by one or more arguments. As far as a parser is concerned, this could be repre-
sented as an atomic expression followed by zero or more arguments instead; this is only one choice
instead of two.

The final change was made to kinds (Table 2.5). The change was similar to that needed in literals

11



to combine integers and floating point numbers. Kind can expand to akind or and akind followed by
a “- 8 kind”. Again, this appears to have been done for the sake of clarity. The fix for this is simple,
combining the two expansions together and making the arrow kind optional.

Original Version
kind = akind�

akind 1 8 kind
Modified Version
kind = akind [ 1 8 kind ]

Table 2.5: The Kind (kind) Non-Terminal

2.3.2 Parser Implementation

The initial version of the parser was developed to parse the grammar as it is described in ?. It was
in developing this parser that the necessity for changes to the grammar became apparent; this was
done in conjunction with development, testing the effects of any changes to the grammar by testing
the performance of the parser on GHC Core files.

The design of the first successful parser did not take into account any requirements for output; it
attempted nothing more than to successfully parse a valid GHC Core file. It consisted of one JavaCC
Compilation unit for each non terminal token in the modified grammar in Appendix B.2, with the
tokens being based on those used in the MondrianFE.jjt component of the Mondrian compiler.

The Core2MC.jjt file contains the JavaCC grammar specification, along with the definition of
tokens and some node renaming and suppression details. The file described in Appendix C.1, page
24, is the Core2MC.jjt file at its current state, not the state described above. The main task of the
Core2MC.jjt section is to build a parse tree from the input core file. This parse tree is the output to
file using the Visitor pattern, where each node is “visited” and output. The details on how a certain
type of node is output is specified in Core2MCDumpVisitor.java (in Appendix C.2, Page 37). Also
worth noting is that a Modified version of SimpleNode.java, which is automatically generated by
JavaCC and is the parent of all other nodes, was used; this is the same version as used in the Mondrian
compiler, so the source is not given here.

2.3.3 Translation Details

Please note that the translation itself and implementation of the translation within the parser are not
complete, and that the current version of the tool does not work. Almost none of the translation
has actually been implemented; this section will describe portions of the conceptual translation and
it is likely that in implementation many of the expected translations here will need modification or
reassessment.

Note that, for convenience, Mondrian Core has been abbreviated to MC, and GHC Core has been
abbreviated to GC for this section.

The top level compilation units are a good place to start; both begin with a a terminal symbol,
“Package” and “%module” for MC and GC respectively, followed by an identifier. This is translated
simply by changing the symbol and keeping the identifier the same, or split into separate strings if
required. The MC then follows with a list of 0 or more declarations; while this has four possible

12



GHC Core Literal Type3 Mondrian Core Literal Type
Intzh and Int32zh and Int64zh IntLit4

Floatzh and Doublezh DoubleLit
Charzh CharLit
Addrzh StringLit

Table 2.6: GHC Core Literals to Mondrian Core Literals

expansions, only two of the are required for the GC translation. The ImportDecl expansion is unnec-
essary, as the GC output includes any imported functions already. The SigDecl is optional in Mondrian
(Perry 2001), as Mondrian infers the types, so it is ignored here. The other two Decl expansions are
ClassDecl, which corresponds to tdefs in the GC grammar, and VarDecl, which corresponds to the
GC vdefg.

In the ClassDecl, the first list of names can indicate an “extends” relationship; this is equivalent
to the optional tbinds following the data and newtype expansions in tdef; as type information can be
inferred, it is easiest to ignore this and leave the list empty. The list of Decl following this name
corresponds to the cdefs which can follow in a data expansion. The list should be left empty in the
case of a newtype expansion.

The VarDecl expansion contains the name and the expression that it refers to. This is identical
to the vdef expansion of vdefg, except that the GC version also has type information; again, this
may be ignored. In the case of a recursive vdefg instead, this should be expanded to several VarDecl
statements, one for each vdef contained, as the VarDecl does not have a recursive option.

GC literals can be in one of four formats, corresponding to the MC IntLit, DoubleLit, CharLit
and StringLit literals. GC does not contain boolean or null literals. The GC literal looks something
like “(value::type)”, which translates to “type value” in MC. The value can remain the same, but the
name of the the type must be translated; while in GC it is possible, according to the grammar, that
this could be anything in the definition of the ty non-terminal, in practice this does not occur. This is
documented in (Tolmach 2000), Section 4.2, page 12. Instead, the following translation can be used.

Finally, the core of any functional language is the expressions it is capable of. Both languages
contain a large number of expressions; we will begin with the simple ones. Translation has not
been done for some of the expressions. Several of the expansions for the GC expression can be
ignored entirely, as they are of no use to MC. GC “%external” expressions, which indicate external
identifiers in a Haskell module, are not needed in MC, which has no mechanism for specifying external
identifiers5 The GC “%note” expansion contains information relevant only to the GHC (Tolmach
2000) and so can also be ignored. A “%coerce” expression is used for type manipulation; as usual,
this is unneeded in MC.

GC “%let” expressions define subexpressions within an expression; have a look at the quicksort
code example in Section 1.4, page 5 to see a Haskell example of this. The syntax is much the same in
both GC and MC, except that MC has both Let and SimpleLet expansions; however, as SimpleLet is
simply the non-recursive binding, all GC let expressions can be translated into the Let, rather than the
SimpleLet. The “%in” keyword in the GC version is removed, and the relevant translation is applied
to convert GC vdefgs into MC Decls.

GC atomic expressions correspond to the MC Lit Lit for qvar and qdcon expansions and Lit Lit
for the lit expansion. I am uncertain how to translate the GC nested expression into MC.

5How these are dealt with is not important for the translation.

13



The “%case” expression is the most complicated of the GC expressions and my translation here is
definitely unreliable. It corresponds to the MC HSwitch expansion, which is intended as a target for
GHC Core translations, where the “%case” becomes and “HSwitch”, the vdefg is translated into an
expression, how I’m unsure, and each alt is translated into a Pattern, again, I’m uncertain how.

2.3.4 Still to be Done

Implementation and testing of the translations described in the previous section. This will involve
modifications both to Core2MCDumpVisitor.java, where the output for each node will be modified,
and to Core2MC.jjt, where more nodes will have to be suppressed (note that the NODE DEFAULT VOID
option in the options section forces this as a default) and the way in which many nodes are named will
have to be changed to include important information from their children.

14



Chapter 3

Users Guide

3.1 Guide to Installation

3.1.1 Tools Required

A variety of tools are required in order to compile and run Core2MC. The following table lists the
tools required and where they can be obtained from; installation details can be found with each tool.
The locations given are valid at November 2002. Note that to make a full installation, the .NET
Framework must be installed under Windows NT/2000/XP; Core2MC, the tool developed in this
project, will run under any system with a Java Virtual Machine, but Windows and .NET are required
to run the Mondrian and C# compilers. If a partial installation in being performed on a Unix/Linux,
then the ���

� � , � � � and %�� ��� tools will be required; under a Windows OS, the WinZip tool will be
required.

If a user does not wish to go through the compilation process, a compiled Core2MC class file can
also be downloaded from http://www.treshna.com/ liam/Core2MC. This can then be run on the Java
Platform without modification.

Tool Location
Java 2 SDK http://java.sun.com
JavaCC http://www.webgain.com/products/java cc
Glasgow Haskell Compiler 5.02 http://www.haskell.org/ghc
Mondrian http://www.mondrian-script.org
.NET Framework http://msdn.microsoft.com/netframework/downloads/howtoget.asp
Core2MC http://www.treshna.com/ liam/Core2MC
Possibly
���

� � http://www.gnu.org/software/make/make.html� � � http://www.gnu.org/software/tar
%�� ��� http://www.gzip.org/#exe
WinZip http://www.winzip.com

Table 3.1: Tools Required for Installation



3.1.2 Installing Core2MC Manually

Installation details here are given for Linux/Unix systems, as this is the platform Core2MC was de-
veloped under. A rough outline for installation on other platforms is also given, as a fully functional
system will have to be running under WindowsT M NT/2000/XP until .NET Frameworks are released
for other platforms. This guide is for those who wish to go through the whole process themselves; this
is likely to be the case if you are modifying or extending the Core2MC. Otherwise, simply download
a precompiled class file from http://www.treshna.com/ liam/Core2MC

Linux/Unix installation

This assumes that the system is fitted with the ���
� � , � � � and %�� ����� %�� � � ��� applications, which are

standard on this platform. See Section 3.1.1 if your system does not have ���
� � installed.

In the directory containing Core2MC.tar.gz type

� � ����� �����������	�
�
�

� � � � % �
���������������
�
���

� �

This will compile the Core2MC class file.

Non Linux OS

Unzip Core2MC.zip using WinZip tool. All required files will be placed in a Core2MC folder in the
directory that Core2MC.zip was unzipped to. Run the following commands.

��� �������������&�����
�
�

��� �
�
��� � � �������&�����
�

�

���

�
��� � �������&���	�
�

�

�
��� �

This will compile the Core2MC class file.

3.2 Using Core2MC

Compile the Haskell source file using the GHC with the 1��������&1������&� parameter. This will cause it
to output GHC Core into a �

( ��� file, named the same as the source file. To translate the GHC Core
file, run

�
��� � �����������
� 9 �����&� � � ��� � � � � 8 . The output from this will be placed in a file � � � file,

which can then be compiled by the Mondrian compiler. See the documentation available with the
Mondrian installation on how to do this.

Note that, as the translation is not complete, that any � � � files generated will not successfully
compile.

16



Appendix A

C Quicksort

� � � �"��� � � � �$����� � �
� � � ��� � * 	�� 3 �

� � � � ��� ��3 �
� �0� � � � �

�

�
� � ���

� � � � �������
�
� � �

� ��� � � � � � � �
� ��� 3 �

� ��3 �
� � ���

� � � � � �)� � /�� � � � �
�

���
� � � � ����� 
 �

� ��� � � � � � � � ��� � * 3 � � �)� ��3 � � � � ���
��� � � � ������� � � ��� � *�3 � � ��� ��3 ���

� � � � ������1��"���
��� � � � ������� � � ��� � *�3 ���

� � � � ����� 3 � � � � ���
	

	

�
� � �

� ��� � � � � � � �
� � � ��� � * 	�� 3 �

� � � � �)� ��3 �
� �0� � � � �

�

�
� � ���

� ��� 3 �&� � � �

���
� ����
 � ��� � * 	 � � � �)� ��!0� � � � � � �2�
�

'�( � ��� � � � ��� �0/�
 � � � � �
�

'�( � ��� � � ��� � * 	 � � �)� ���"/ ���
�
��� �

!�! � � �)� ���

'�( � ��� � � ��� � * 	�� � � ���27 ���
� ���6�

1�1�� � � ���

� ��� � � �)� � /�
 � � � � �
�

�&� � � 
 � ��� � * 	 � � ��� ���
�
� ��� � * 	 � � �)� ��� 
 � ��� � * 	 � � � �����
� ��� � * 	 � � � ���2
��&� � � �



!�! � � ��� ���
1�1�� � � ���

	

	

�&��� ��� � � � � ��� � ���
	

18



Appendix B

Grammars for Mondrian Core and GHC
Core

B.1 Grammar for Mondrian Core

This grammar was derived from Mondrian.hs, part of the Mondrian package available at http://www.mondrian-
script.org.

The following rules apply to this grammar

� Non-terminal symbols appear like this

� Terminal symbols appear like � ( � �

� Symbols enclosed within square brackets are optional

� � pattern � is 0 or more occurences

� Note the difference between ( and � characters; the second one is a non-terminal, the first is
symbol of the grammar.

� pattern1
�
pattern2 is a choice



CompilationUnit = � � � � � %�� Name 	 � Decl � �
Decl = ClassDecl Name 	 � Name � � 	 � Decl � �

�
ImportDecl Name�
VarDecl Name Expr�
SigDecl Name Expr

Expr = Lit Lit���
� � Name��� ' � � � ( Expr 	 ( Pattern, Expr ) ������ ' � � � ( Expr Name 	 � � Pattern, Expr � � �

�	� � � Expr Expr Expr���
� � � Expr Name Expr Expr��� ��� 	 � Decl � � Expr��� �
�
� ��� � ��� 	 Decl � Expr���

� �
� � � 	 � Expr � � Expr�
� ���
Expr Expr��� � ' Name 	 � Decl � �

��� ��� Name Name Expr��� � 	 � Statement � �
� �	� � �&� � � � 	 � Statement � �
��� ��*���� � � Expr 	 � � Name, Name, Expr � � � (Maybe Expr)��� ( ��� ' Expr��� * � � Name Expr��� � � ��� 	 � Expr � �
�	�
�
� � � � Name 	 � Name � �

�	�
�
� � � � � � � � � � Name 	 � Name � �

� ���&� � �&� Name 	 � Name � �
��� ��� Name��� ��� � � � � � � Name�
� ��� Name�
� ��� � � � � � � Name

Table B.1: Mondrian Core Grammar pt 1

20



Statement = Expr Expr�
� � � ��� � �&��� Name Expr
Pattern = Pattern Name 	 � Decl � �

���
�
� ��� Name Name Name���
� � � � Lit��� � � � ���$�

Lit =
�
� � � � � Int��� ��� � ��� � � � Double� � ( � � � � � Char��� ��� � � % � � � String��� ����� � � � Bool��� ����� � � �

Name = 	 String �

Table B.2: Mondrian Core Grammar pt 2

B.2 Modified Grammar for GHC Core

The following rules apply to this grammar

� Non-terminal symbols appear like this

� Terminal symbols appear like � ( � �

� Symbols enclosed within square brackets are optional

� � pattern � is 0 or more occurences

� Note the difference between ( and � characters; the second one is a non-terminal, the first is
symbol of the grammar.

� pattern1
�
pattern2 is a choice

21



Module = ��� ��������� mident � tdef � � � [ � ����� � � ] vdefg � �
tdef = � � � � � qtycon � tbind � = � cdef � � cdef � �� � � � ' ��* � � qtycon � tbind [ 
 ty ]
cdef = qdcon ��� tbind � � aty �
vdefg = � ��� � � vdef � � vdef � ��

vdef
vdef = qvar ��� ty = exp
aexp = mident � ( dcon

�
var )�

var� � ( lit
�
expr � )

exp = aexp � arg ��
� ������� � �&� �

� �
� ��� � � (2( ���&� 3 �$� � � ( � '�� � binder � + 1 8 exp� � ����� vdefg � � � exp� � � � �$� exp � � � vbind � alt � � alt � �� � ������� �$� aty exp� � � ���&����� � char � ���

exp� � �����&��� � � � “ � char � “ aty
arg = � aty

�
aexp

alt = qdcon ��� tbind � � vbind � 1 8 exp�
lit 1 8 exp� � 1 8 exp

binder = tyvar� � tyvar ��� kind �
vbind = � var ��� ty �
lit = ( [ 1 ] � digit � + [ � � digit � + ]� �

char
�

� ��� � char � ���

) ��� ty �
char = Any ASCII character in range 0x20-0x7E except 0x22,0x27,0x5c� �

� �
� ��� � � ( � hex hex

hex = � �
. . .

� 	 �
�

�
. . .

� �
aty = tyvar�

qtycon� � tt �
bty = � aty � +
ty = bty� � ����� � ��� � tbind � + � ty�

bty 1 8
akind = �

��
 �
�
� � kind �
kind = akind [ 1 8 kind ]

Table B.3: GHC Core Grammar pt 1

22



mident = uname
tycon = uname
qtycon = mident � tycon
tyvar = lname
dcon = uname
qdcon = mident � dcon
var = lname
qvar = [ mident � ] var
lname = lower � namechar �
unmae = upper � namechar �
namechar = lower

�
upper

�
digit

�
‘

lower = �
�
. . .

� � �
upper =

� �
. . .

���
digit = � � 	

Table B.4: GHC Core Grammar pt 2

23



Appendix C

Project Source Code

C.1 Core2MC.jjt

� � �

�

� �����������
��1 � �&����� �&� �$� ��� ����� � � �������&�2��� � � � ��� � ��� �������
�

� � � ��� � � % �
� ����� ��� � � � � � � ��� � � � � � ��� ' � � ( � � � ( � � � � ���

�

� �����������
� � � � � � � � � ����� � � ��� � �$� � � � � � � � � � � � �"� ( �2��� ��� �$� � � � � � ��� � � � � � � � � � ��* �
�

� � �&� ( ��� � � �
� ��� �

� ��* ���
� �

� ����� � �&%�� � � 1 � � � � � � ��� � � � �
�

� ��� � *�� � % ( � � � ��� ��� � 3 � �
� ��� �

� ��*&���
�

�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � ���)� � �"� ( � � %�� � � ��� � ( ��� � � ��� � � � � � � ���&� � � ( � � � � ��� � ����� �2%�� � � ��� � � �&� ��� �$���
� � * � � %���� � ������* � � ( � ��������� ' � � %�� � ����� � � � ��� ' � � �

� ��� �
����� �
� � ( � � %�� � � ��� � 3 ��� �

� ( � � � ��� � �
� ���	�
����� ( ����� ����� ��� � � �����&� � � ��� �

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

� � � ���)� � �"� ( � � %�� � � ��� � � �&�2� � � � � ����� � � � � � � ����� ��� � %�� � � ��� � ���&� � � � � �
�

� ��� � *�� � % ( � � � � � 	�	�� 3 � 	 	
	 � � � � � � �&� � *)� �&� � � �
� � �

�

� � �$�����"� ( � � � � ��� ��� �2� ( � � *�� �&� � � � � � �
� ����� � � � ��� � � ��� � � � � � � *�� ( �

� � � ��� � �	�
�
�
� � � � �

� � ( �2��������� � ��� � �&����*����"� ( � ��� *�� �&� � �
� �	� ��� *�3 ( � ' � � ��� 3
� ���

� � ��� * � ��� � � � � � � � � � � *&�	� ' � � ( �&�"� ( � � � � ���
�

�

��� ��� � � � ��� � %�� � ��� � �&� � � *���� � � � � %�� ��� � ����� � � ( � � � � ��� � ��� � � � � � � � � � ���)� � � � �
� ���"� ( � � � � ��� � ��� * � ��� ����� �

� ��� � ���&��*"� ( � � � � � ����� � ��� � ��� ��� � � � ��� �
� %�� � ��� � �&� � ����� � ��� *�%�� � � ��� �����

�
����� � � � � *�*&���

�



�

� � �&� ( ��� � � � � � � � �
���

�
� �

� �
� ������� ����� 	�	

�

� �

� � � � � � � �
� � � � � � � � � � � �&�	� � � � � � 
"����� � �
� � � � � 
"����� � �
� � � �	� � � � � � � ����� 
"����� � �
�
� ��� �

� � 
"����� � �
�
�
� �&� � � � � � � � � � � � � 
"����� � �

	

�
�
�
� � � � � � � ��� � �����&�����
���

�
�
� ����� �

��� � � � ' � � � �
�
�
� ����� �

��� � �
� �

�

� �

� � �&� � � � �"� ( � � ��� � ��� � � � ��� � � � � � � �&�"� ( � � �
� � � � ��� � ����� � � ��� � � �

� � � � � � ��� � ��� �����&�����
� �

��� %���� � � � ��������� ��� � %
� � � � � � � ������� ��� �

� �������&���"
 � � � �$� �

��� ��� � � * � � �&��� � � � � 3 �$���������
�����

� � � � � � ��� � ��� ��� � �������
� � � � � � � � � � � ����� � �����2���&��
 � � ' � � � � ����� � ����� � � *�� �&� � � ���&� 3 ����� � ���
� � � � � � � � � � �2%���� � � � � � � � � �&��� �&� � � � ' � � � � � � ��� 	
	

� � � � � � ��� � ��� � ����� � � ��� � �&� � �&� � ����� � �
� � � � � � � � ��� � �&� � ����� � � � � � � � � ��� � � %"�	�&� � � ����� � ( ��� ' � �

��� � �
� �

�

�
� ��� ��� � � � � �

� �&��� �&� � � � ' � � ��� � �&� � �&� � ���&� � � �����&� � � ��� ��� 	
	

� � � � � ��� � � � � � � � � � ���
�
� � � ��� � � % � ��%�� 	��)�

� ����*
� �

� �)��� � � ��� � � ��%������
	

� � � � ( � � � � � � ��%�� ���������"�������
� ��� � �$����� � ����� � � � � � �&� � � �����)� �
��� � ������� � �	�&� � � � � � �&� � ��� ����������� 3 � �����&� � ��� � ������� ��� �	�$���
	

� � � � ( � � � �)��� ��� ��� � � � � � �
� �)�����

� ��� � ������� � �	�&� � � � � � �&� � � � � �)����� �
��� � ������� � �	�&� � � � � � �&� � ��� ����������� 3 � �����&� � ��� � ������� ��� �	�$���
	

25



� � � � ( � ��� ��� � � � � � ���
� ��� � ������� � �	�&� � � � � � �&� � � �����
	

	

� � � � � ��� � � � � � � � � � �
� ���$� � � ��� � � ��� � � % � ��% � 	���� � ( �&� ' � � � � � � ��%�� ����������3

� � �)��� ��� ��� � � � � � 3 ��� �$� � � � � �
� ���������	�
� �

� �)�������� ��� � � % �
��� � ��� 3 ����� � � ��� �

��� � ������� � �	�&� � � � � � �&� � ��� ���������	�
� � � � � � �$���

� ��� � ��%�� � ��� � %�� ( 
�
 � �
� � � ��� � � � ����% ����
 � � ' � � ��� � � � ����% � ��� � �$����� � %���� � � � � � � �����
���

�

� ( � ' � ���
� � � ���

�

%���� � � ��� � � 
�
 � � ���0� ����� ��� � �
�
� � � ���2
 ���

�

%���� � � ��� ��������* � � ! ���
�

%���� � � ��� � ���
	

���&�$�

� ��� � ��%�� � ��� � %�� ( 
�
 ���
� �

� � � ���"
 � ��%�� 	 � �
�
	

���&�$�
� ��� � ������� � �	�&� � � � � � �&� � ��� � � � %�� � � ��� � �����&�����
�"/ � � � ��� � � ����7 �$���
�&��� ��� � �
	

����*
� �

� �)������
 � � ' �����&���	�
� � � � ' � � ��� � � � �&� � ���&� � � � � ��� � ���������
	

� � � � ( � ��� ��� � � � � � ���
� ��� � ������� � �	�&� � � � � � �&� � ��� � � � � � � % � ! �

� � � ���"! � � � !�� ���
�&��� ��� � �
	

����*
� ����� � � ��� 
 �

��� � ��� � � � � � ��� � � % � � 3 �
��� � ��� � � � � � � � ����� � � � � � � ��� ! �

� � � � �

� � � � ����� � ����� � ' 
 � � ' � � � � � ��� � �&��� � � ����� � � ��� � �&� � ��� � ����� � � � � � � � ������� � � ��� ��� �

� � � �&����� ��� � 
 �
� ���$��� � �&����� ��� � ���

� � � � � ����������� �
� ��� � ������� � �	�&� � � � � � �&� � ��� ��������� � 3 � ���	�&� � �&� � �&� ��� ����� �$���
	

���&�$�
� ��� � ������� � �	�&� � � � � � �&� � ��� �	� � �$���&� � � ��� �

� �)�$� � � � � �$� ��� ��� ����*
�

�����
� � ��� �

� � � ����� ��� ��� � � %

26



�����&�����
� � � � � ����� � �
� 
 � � ' �����������
� � � � � � � � � ����� � � ' ���

� �
��� � � � ��� � � � � �

� 3 � � ��� ���
��� � ������� � �	�&� � � � � � �&� � ��� �&� � ��� � � � ������� �

� � ��� ���&� � ��� �
� � !������ � � ��� ���

	

� '
�

����� ��� � ���
	

� � � � ( � � � � � � ��%�� ���������"�������
� ��� � ������� � �	�&� � � � � � �&� � � �����)���
��� � ������� � �	�&� � � � � � �&� � ��� ����������� 3 � �����&� � ��� � ������� ��� �	�$���
	

� � � � ( � � � �)��� ��� ��� � � � � � �
� �)�����

� ��� � ������� � �	�&� � � � � � �&� � � � � �)����� �
��� � ������� � �	�&� � � � � � �&� � ��� ����������� 3 � �����&� � ��� � ������� ��� �	�$���
	

� � � � ( � ��� ��� � � � � � ���
� ��� � ������� � �	�&� � � � � � �&� � � �����
	

	

	

�
�
�
� � � � � � � � �����������
���

� � � � � � � �
�
� �	� � �

� � � � �
�

� �

, � � � �
, � �

� �

, � � � �
, � � �	�
	

� � �
� � � ����� � ��� � � � � � ���)� � ��% � � � � � % ' � � ( � ��� ��� ��� � ��� ' ��� � � �$� � ( � � � � �&���)� � �

�
� � �

� �
�

/ � � � � � �5/ � ��� � � 7 � / � � � �
� � � � 7 � �27
, / ��� � � � �5/ � � � � � 7 � / � � � �
� � � � 7 � �27
, / 
 � � � �
� � � � � � / � � � � � 7 , / � � � � � 7 ,5/ � � � � �
� � � � 7�, � � � � 7
, / 
 �

� � � � �"	 � � � 1 � � � � 7
, / 
 �

� � � � �"	 � � � 1 � �	��3 � � � �07
, / 
 � � � � �
� � � � � 	 � � � 1 � 	 � � 7
	

� � � ��� � �
� ��� � �

27



� � � � � � �&� � ����� � �&� � ��� � ����� � � ��� �
� � � � ��� �"� ( � � � ��� � � ��� � �����2� ( ��� � ���������
� �

�
� � �

� �
�

/ ����� � � � � � �
� � � � ��� �
/ � ��� � � ��� � � ��� � � � � 7,5/ � ���&� �
��� � � ��� 7

,5/ � � � � � � � ��� � � � � 77
,
/ 
 � �
� � � � � � � ��� � � � � � 	 � � � 1 � 	 � � ��	 � � � 1 � 	 � ��� � 7

,
/ 
 � ���&� �
� � � � ��� � � � � 	 � �	��3 ��� � � ��	 � � � 1 � 	 �)3 � � � 1 � �	�)3 � � � 1 � � � �)� ! 7

,
/ 

� �

� � � � �
��� � � ��� � � � �0��	 � � � 1 � 	 � �)� � 7
,
/ � � � ��� ��� � � ��� � � � � �
� � � � ��� �

��	 � � � 1 � 	 � ��� ! �
�

� � 	 � � � 1 � 	 � �)� � � /	��� � � � � ��� 7 � � ��	 � �	��3 � � �)3 � �	��3 � � � ��� �, �
�

� � 	 � � � 1 � 	 � �)� ! � /	��� � � � � � � 7 � � ��	 � �	��3 � � �)3 � � �)3 � � � �)� �
, ��	 � � � 1 � 	 � ��� !2/	��� � � � � ��� 7 ��	 � �	��3 � � �)3 � �	��3 � � � ��� �, ��	 � � � 1 � 	 � ��� ! � /	��� ��� � � � � 7 � � 	 � �	��3 � � �)3 � �	��3 � � � �

7
,
/ 
 ��� � � � � � � �2	 � � �)3 � �	� � � 	 � !	�)3 � 1 � �)� � � 	 � � � 1 � 	 � �)� !"7

, � � � ����� � � � � ( � � � � �&���)� ����� � ( � � ��� �6� ��� � � %�� � ����� � � � � � �/ � � � �
� � � � � � �
� � � � ��� �

� � �

� ��� 	 � � �)3 � � � �)3 � �
� �)3 � � �	� �)�

, ��� � � �

�6	 � � � �)3 � � �)3 � � ��� �
, � �	� 	 � � � 1 � 	 �)3 � � � 1 � �	� � 	 � � � 1 � 	 �)3 � � � 1 � � � �
�

�
�
� � �

7
,
/ �	�

�
��� � � �
��� � � ��� �
� � � �

� ��� 	 � � � �)3 � � � �)3 � �
� �)3 � � � � ���

, ��� � � �

�6	 � � �)3 � � ��3 � �	�)3 � � ��3 � � �)3 � � �)3 � � � ��3 � � �)3 � � � � �
,"	 � � � 1 � 	 � � � 	 � � � 1 � 	 � � � �
,"	 � � � 1 � � � � 	 � � � 1 � 	 � � 	 � � � 1 � 	 � ��

28



�
� �
� � � �

7
	

� � �
� � � �
� �
� � �

� � �
� � � ( � �$� � ��� � ����� �

� � ��� � ��� �"� ( � ( ��� � ��� � � ��� � �$����� � % � � � � �
� � ( �

� �$�����"%�� � � ��� ��� �&� � � � � % ( � � �
� �

� � � �&��� � ( � ��� ( � ��� ' � ���0� ��� � � ��� 3
� ��� �"� ( ����� ' ���&��� � � � � � ����� � � � � � � � % �

��� � � � ���2� ( � � ( � � �
� �

� �
�

� �
�

� �

�
� � �

� �
�

/ � � � � � � �	
� � � ��� ���	�)3
� � � ��� � � � 1 � � � � � � � �)3
� � � ��� � �	�)3
� � � ��� � � � 1 � � � � � 	 � �)3
� � � ��� � � � 1 � � � � � � � �)3
� � � ��� ��� � 1 � � � � � � � �)3
� � � ��� ��� � 1 � � � � � � � �)3
� � � � � ��� � 1 � � ��� � � � �)3
� � � � � � � � 1 � � � � ��� � �)3
� � � ��� ��� � 1 � � � � � 	 � �)3
� � � ��� ��� � 1 � � � ����� � �)3
� � ����� ��� � 1 � � � 	 � � � �)3
� � � � 	 ��� � 1 � � � � � � � ��

7
,
/ � ��� ��� �

	
� � � ��� � � � 1 � � � � � � 	 �)3
� � � � ��� � � 1 � � � � �
� 	 �)3
� � � � � � � � 1 � � � � � � 	 �)3
� � � � 	��
� � 1 � � � � 	
� � �)3
� � � � 	 � � � 1 � � � � 	 � � �)3
� � � � � �
� � 1 � � � � � � � �)3
� � � � � � � � 1 � � � � � � � �)3
� � � � � �
� � 1 � � � � � � � �)3
� � � � � � 	 � 1 � � � � � � � �)3
� � � � � �
� � 1 � � � � � � � �)3
� � � � ��� � � 1 � � � � �$� � �)3
� � � � � �
� � 1 � � � � � � � �)3
� � � � � � � � 1 � � � � � � 	 �)3

29



� � � � ��� � � 1 � � � � � � 	 �)3
� � ��� � � � � 1 � � ��� � � 	 ��

7
	

� � � � ����� � ��� �&������� ��� �
� * � � ��� � � �

�
� � �

� �
�

/ � �
� � � � � � ��� ��������� � 7

, / � ��� � � � � � � � � � 7
, / � ��� � � � � � � � � � ' ��* � � � 7
, / � �
� � � � �&� � � 7
, / � � � � � � �����	� 7
, / � � � � � � � � � ��� � 7
, / � � � � � � � � � ������� �$� � 7
, / �

�
� � � � � � ����� � 7

, / ��� � � �
� ��� � � � ��������� � � � � 7

, / �
� �

� � � � � ��� � � � � 7
, / � � � � � � � � 7
, / � � � � � � �	� 7
, / � � � � � � � � � � � � 7
, / ��� � � � � � � � ����� � ��� � 7
	

�
� � �

� �
�

/ � ��� � � �
�
�
� � � � � 7

, / ��� ��� ��� � � 
 � 7
, / � � � � � � 7
, / � � �

�
�
� � � ��� � 7

, / ���
�
� � � � � � � 7

, / � � � � � � � �$� � 7
, / � � � �

� �	� � � � � 7
, / � � � � � �	� � � 	 � 7
, / � � ��� �	� � � � � � � � � 7
, / � � � � �

�
� � � � � 1�7 � 7
, / �

� � ���
� � � � � � � � � � 7

, / �
�
� � �

�

� 7
, /�� � � � ��� � � � � � � � 7
, / � � �

� � � � � 7
, / � � � � � � 
 � 7
, /��	� � � � � � � � 7
	

� � �&��������� � � � � � � � � � � � �

30



� � � �&����� ��� � ��������� � � 
 � � ��� ��� �
�

� � � � � ���
	

�

/	� � � � � � 7 � � ��� � � � �6� � � ��� � � / � � � � � � � � � 7 � � �6	 / � � � ��� 7 � ��� � � � � � / � � � � � � � � � 7�� �
�

����� ��� � ��� � � ( � � �
	

	

� � � * � � � � � � � � � � � � � �

� � � � � � � � � � 
 ��� � � � � 	
�

/ � � � � 7 � � *���� � � � � � � �
� � � �"� �2/	� � ��� ��� 72/ � � � � � � �&7 � � � � � � � / � ��� � � � � � � 7 � � � � � �"� � � 	 �

, / � � � � ��� �&7 � � *
��� � � � � � � �
� � � �2� � 	 /	��� ��� ��� 7 � * � � �

	

� � ��� � � ��� � � � � � � � � � � � � � � � �

� � � ��� � � � � � 
 � � � � � � 	
�

� � ��� � � � � / � � 7 ��� �
� � � �"� � � ��� * � �"� �

	

� � �
� � � � � ��� � � � � � � � � �

� � � ( ���&� ' � � �
�
� � � � ����*6��� � � ��� � ��� � � � � ( ���&�"1"� ( �"%�� � � ��� ��� ��� � � � 	 � � * � � ��� �

� � � 	.�	� � � ������� � � � �&���$*�3 � � �
��� � � ��� � ( � ��� ( � �����&��� ��� %�� � %�� �

� ���	�
��� � � � * � � ���&�
� � ' ����� 3 ���

���
� % � ��� � � � � � ���$�2���2�&����� '�( � � ( �

��� � � � �
� � ( �

�

( ��� � � ��� �
��� � '�( � � ( ��� � �����2%�� � � ��� � � � � � � � ��� � � %�10�$� � � �

��� � � ����� ( � � � �&��� � � % � � ���
��������� ' � � � * � � * � � ���&� 1 ( ���&� � � � ( ����� ��� ��� � � � � �&� �)� � ����� � � � ��� �"� ( � � � '
� � ��� � � � � � � � � � � �
� ���&��� ��� � � � ��� � � % �

� ���&� ' � ��� ��� � ( 3 � � � � �$� � � � ����� � �"� ( � ��� ( � ��� � ��� � � ��� �
�&� � ��/ � � � � � �	� 7 � � � ( ���"� ( ��� %�� � ��� � � � � ��� * � � ��� � � � � � ������� � � ��� � � �

� � ( � � � ���
�

� �

� � � � � � � � � � � 
�� � ��� � � � 	
�

/ � ����7�/ � � � � � �	� 7 ��� ��� � � � / � ��� � � � � � � 7 � � � � � �"� �2/ � � � � � �	� 7, � � ��� � �

31



	

� � � � � � � � � � 
 ��� � � � � 	
�

� � � � � � / � � � � � � 7 � * � � /	��� � ����� 7 ��� � � �
	

� � � �&� � � � ��� � �&� ��� � � � � �

� � � � � ��� � � � 
�� ��� � � � 	
�

� � � ��� � � � � / � � � 7 � � ��� � � � , �
� � � ����, �

� � � �"�
, / ��� � � � �&7 � � � �&��� � � � � , ��� � � � / � � � � � � 7 �
	

� � ��� � �&� ��� � � � � �

� � � � ��� � � � 
 ��� � � � 	
�

� ��� � � � � � ��% � �"� �
, / � � ��� � � � � � 7 � � �

� ����� � �"� ! / � � � � � ��� � � 7 ��� � � �
, / � � � 7 ��� � � � � ��/ � � 7 ��� � � �
, / � � � � 7 ��� � � � / � � 7 � � �

� � � � / � � � � � � � 7 � �$� � � � / � � � � � � � � � 7 � �$� � �2� �2/ � � � � � �	� 7, / � � � � �	� 7 � � * � � ��� � � �
, / � � � � 72/ �	� � � � � � �
� � � � ��� 7 ��� � � �
, / ��� � � � � � � 72/ �	� � ��� � � �
��� � � ��� 7 ��� * � �
	

� � � ��%�� � � � � � �

� � � � � ��% � � 
 � ��% � � 	
�

/ ��� 7 ��� * � �
, � ��� � � �
	

� � � � ��� � ��� � � �

� � � � � ��� � � 
 � ���
� � 	
�

� � ��� � � � � / � � 7 ��� �
� � � �"� � � � � �

� � � � � �"/ � � � � � �
� � � 7 ��� � � �
, / � � � � �	� 7 � � ����� � � � � / � � � � � �
� � � 7 ��� � � �
, / � � � ��� � � 72/ � � � � � �
� � � 7 ��� � � �
	

32



� � � �
� ����� � �

� � � � � �
� ����� � � 
 � � � ����� � � 	

�

/ ��� 7 � � �
� � � �

, ��� �
� � � �

	

� � � * � � � �
� ����� � �

� � � � ��� �
� � � � 
���� � � � � � 	

�

� * � � � � �
, / � � � � �	� 7 � * � � � � � / � � � � � � 7 � � � � � � / � � � � �	� 7
	

� � �
� � � � � �

� ����� � �

� � � � ��� �
� � � � 
���� � � � � � 	

�

/ � � � � �	� 7 �
� � � � / � � � � � � 7 � * � � / � � � � � � 7

	

� � � � ����� � � � �

� � � � � � �&��� � � � � 
�� � �&��� � ��� � 	
�

� / � � � � � � � � � ��� � � � � 7 ,5/ � � � � �
� � � � � � ��� � � � ��� � � � � 7 ,5/ � � � ��� � � � ��� � � � � 7,5/�� � � � � � � � � � �
� � � � ��� 7
� / � � � � � � 7 � * � � / � � � � � �&7

	

� � � ( � � � � �&��� � �
� � � �����2� ( � �"� ( � � � �$� � � ( � �&� � ��� � ��� ��� � � � � � � � � � ( ���&� 3 � ��� ��� � ����� � � � ��� ' ��� �

��� � ����� ' ��� * � � � ( � � � ���&���)� �&� �
� � � � � ' � � ( � � � ( � � � ���

�

�
� � ��� ( � � � � 
 � ( � � � � 	
�

/ � � � � � � 7
, / � ��� ��� 7
	

33



� � � �&� � � � � * � � � �

� � � � � � * � � 
 � � *
� � 	
�

� * � � � � �
, � � *���� � � �, / � � � � �	� 7 � * � � / � � � � � �&7
	

� � �
� � � � � * � � � �

� � � � ��� * � � � � 	
�

� � � * � �"� !
	

� � � * � � � �

� � � � � * � � 
�� *
� � 	
�

��� * � �
, / � � � ����� 7 � ��� �

� � � �"� ! / � � � 7 � * � �
	

� � � �&� � � � � � � � �
�

� � � � � � � � � � � 
 � � � � � � � 	
�

/ �	� � � 7, / � � � � 7
, / ��� � � � 7, / � � � � �	� 7 � � � � � � / � � � � � � 7
	

� � � � � � �
�

� � � � � � � � � � 
 � � � � � � 	
�

� � � � � � � 	5/ � � � � � �
� � � 7 � � � � � � �
	

34



� � � ��� � � � � � ��� � �

� � � � � � � ��� � � � � 
 � ��� � � % �
�

� � � � � ���
	

�

��
&/ � � � � �&7
�

��� � � ( � �
�

�$��� � � � � � � � � ��� %���� �
�&��� �&� � ��� ��� �

� ���$� � �
� �

� ��������� � � � � � ��� � � � � �
	

	

� � � � � � *���� � � � 
 � ��� � � % �
�

� � � � � ���
	

�

��
&/ � � � � �&7
�

��� � � ( � �
�

�$��� � � � � � � � � ��� %���� �
�&��� �&� � ���
	

	

� � � � � � *
��� � � � 
 � ��� � � % �
�

� � � � � � 35���
	

�

� 
 � � ��� � � � � / � � � 7 ��
 � *���� � � �
�

��� � � ( � �
�

�$��� � � � � � � � � ��� %���! � � ��3 � �
�

� �)3 � � � !��
�

�
��� %�� ���

	 ���
� ����� ��� ��%�* ( � � � �&� � �&� � �&� � � � � � � �6� ��� � � %�� �������
� ����� ��� �

	

� � � � � * � � � � � 
 � ��� � � % �
�

� � � � � ���
	

�

��
&/ � � � � �&7
�

��� � � ( � �
�

�$��� � � � � � � � � ��� %���� �
	

35



	

� � � � � � ��� � � � 
 � ��� � � % �
�

� � � � � ���
	

�

��
&/ � � � � �&7
�

��� � � ( � �
�

�$��� � � � � � � � � ��� %���� ��&��� �&� � ���
	

	

� � � � � � ��� � � � 
 � ��� � � % �
�

� � � � � � 3 ���
	

�

� 
 � � ��� � � � � / � � � 7 ��
 � ��� � � �
�

��� � � ( � �
�

�$��� � � � � � � � � ��� %���! � � ��3 � �
�

� �)3 � � � !��
�

�
��� %�� ���

	

	

� � � � � �
� � � � 
 � ��� � � % �

�

� � � � � ���
	

�

��
&/ � � � � �&7
�

��� � � ( � �
�

�$��� � � � � � � � � ��� %���� �
�&��� �&� � ���
	

	

�
� � � � � � � � � 
 � ��� � � % �
�

� � � � � � 
 � � ��� 3 � �
	

�

	 � 
 � � ��� � � � � / � � � 7 � � 
 � � � � �
�

� � � � 
�
 � ����� �
��� � � ( � �

�

����� � � � � � � � � ��� %�� ������&�$�

36



��� � � ( � �
�

�$��� � � � � � � � � ��� %���! � � ��3 � �
�

� �)3 � � � ! � � � ��� %�� ���
	

	

C.2 Core2MCDumpVisitor.java
�
�
� ����� �

��� � �
� �

�

� �

� � � � � � ��� � ��� �����&�����
� � � � � � � � � �&��� �
�
� ��� � � � �)� ���������	�
� � � � � �&���

� � � � � � �&� � � � � � ��� � �&��������� � �&���
� � � � � �&� �

� � �
� ��� � �"
 � �

��� �&��� ���2� ( � � � � � � � � ��%�� � � � �2�&� �
� �

� � � ��� '�( ��� ( ��� � ( � � � ��� �0� � � �
��� ��������� � ���6� ( ��� � � � � � �&������� ��� � � *�� ( � � �&����� � � �

� ��� � � ��� �"� ( �
��� � � � �0� � � � ��������� ' � � � * � � � ' � � � � � � ( � � � � � ����� ����� �

� � � ��� �$� �����
���

�
� � � � � � � � � �

�

� � � � � � � � � ����� � ��� � � � 
 � ����� �� � � � � � � � � ����� �
� � ����� � ��� 
 � � ' � � � � � � � ���

� � � � � �������&�����
� � � � � � � � � ����� � �
� ����� � �&��
 � � ' � � � � � ��� � �&��� � � *)� �&� � � �	�&�)��� ��� ��� � �$����� � �������
	

� � � � � �������&�����
� � � � � � � � � ����� � � � � � � ��� � ����� �	�&� � �
� ����� � �&��
������ � �
	

� � �
� � �&� � ��� � � % �

� ��� � � � ��� � � % � �
� � ��� � � % � � � �����0� � 
 � � ' � ��� � � % � � � ����� � ���
����� � � � � � 
 � � � / �

� ��� � ���.!�! � �
� � �

� �
��� � � � ��� �$���

	

�&��� ��� � � �
�

��� � ��� � � % � ���
	

� � � � � �&� � � � � � ����� � � � � � ��� � ����� � ����� 3 �
� � � �

� � � � � ����� � ��� � � ��� � � � � ( � � ���&� � � � � 
 � �
� ( �&� ' � � ' ��������� ��� � �
� � � � � � � �

� ����� � � ( � �����&� � �
� � ����� �$���

	

� � � � � � � � � ����� �
� � � � � � � � � ��� � ����� � � ��� 3 � � � � � � � � � � �

� � � � � � � � 
�
 ��� � � � � �����&� � ���
�

� � � � � � � � ��� � � � ��� � � % � �����
� � ��� � � � � 
�
 � ��� � � � � ��� � � � ��� � ��� � � ��� � � � � ( � � ����� � � � 7 � ���
� ����� � �&�

�

� � � � �&� � ����� � ! � ���������
�
� ��� � ��!�
 � �

� � � � 
 � ����� � � ( � ������� � � � �$� � � � � ( � �43 ��� � � � � ���
�
� ��� � � 1�
 � �

37



����� � �&�
�

� � � � �&� � � � � ��� � � � ��� � � % � � ! �2� �$���
	

���&�$�
� ����� � �&�

�

� � � � �&� � � � � ��� ���
�
� ��� � ��!�!��
� � � � 
 � ����� � � ( � ������� � � � �$� � � � � ( � �43 ��� � � � � ���
�
� ��� � � 1�1 �
	

�&��� ��� � � � � � �
	

� � � � � � � � � � � � � � �
� � � � � � * � � � � � � � ��� � ����� � � ��� 3 � � � � ����� � � � �

� � � � � � � � 
�
 ��� � � � � �����&� � ���
�

� � � � � � � � ��� � � � ��� � � % � �����
� � � � ����� � ��� � � ��� � � � � ( � � ���&� � � � 7 � �
�
� ����� � � � ��� 3 ���������� � �&�

�

� � � � �&� � ��� � � � � � �����
�
� ��� � ��!�!������� � �&�

�

� � � � � � � � ��� � � � ��� � � % � � ! � � �$���
�
� ��� � ��!�!��
� � � � 
 � ����� � � ( � ������� � � � �$� � � � � ( � �43 �

� � � ��� � � � ���
�
� ��� � � 1�1 �
����� � �&�

�

� � � � �&� � � � � ��� � � � ��� � � % � � ! �$� �����
�
� ��� � � 1�1 �
����� � �&�

�

� � � � �&� � � � � ��� � � � ��� � � % � � ! �$� �����
	

���&�$�
� ����� � �&�

�

� � � � �&� � ��� � ��� ( � � %	�����
	

�&��� ��� � � � � � �
	 � �

� � � � � �&� � � � � � � �
� � � � � � � � � � � � � ��� � ����� � ����� 3 � � � ����� � � � � �

� �&��� ��� � �
� � � � � ��� � � ����� 3 � � � � 3 � 	 ��3 � � �$���

	

� � �
� � �&� � � � � � � �

� � � � � � � ��� � � � � � ��� � ����� � � ��� 3 � � � � � � � � � � �
� �&��� ��� � �

� � � � � ��� � � ����� 3 � � � � 3 � ����3 �$� �$���
	

� � � � � �&� � � � � � � �
� � � � � ��� � � � � � ��� � � ��� � � ��� 3 � � � � � � � � � � 3 � ��� � � %�� � � � 3 � ��� � � % ����� �$� �

� �
� � ���	� � ��
 � ����� � ��� � � ��� � � � � ( � �����&� � � ���� ��� � � % �

� ��� � � � ���2
 �
� ��� � � � ��� � � % � ���

� � � �$��� � � 7 � �
� � � � � � � � 
�
 ��� � � � � �����&� � ���

�

� � � � � � � � ��� � � � ��� ���
����� � �&�

�

� � � � � � � � � � ! � �$���
�
� ��� � ��!�!��

38



� � ��� � ��� � � ���
� ( � � � � � � � ��� � � � �$� � � � � ( � � 3 �
� � ����� � ��� ���

����� � � � � � ��
 ��� � � / ����� � ��� � ��!�!)�
� ����� � �&�

�

� � � � � � � � ��� � � � ��� ! ��3 �$���
� � ��� � ��� � � ���
� ( � � � � � ��� � ��� � � � ��� � � � � ( � � 3 �

� � ��� � � � � ���
	

��� �	�&� � �&�
�

� � � � � � � �����$���
�
� ��� � � 1�1 �
����� � �&�

�

� � � � �&� � � � � ��� � � � ��� ! ����� �������
	

���&�$�
����� � �&�

�

� � � � �&� � � � � ��� � � � ��� ! � � � � ! ����� �$�����
�&��� ��� � � � � � �
	

� � � � � �&� � � � � � � �
� � � � � � � � � � � � � � � � � � ��� � ����� � ����� 3 � � � � ����� � � � �

� � � � � � � � 
�
 ��� � � � � �����&� � ���
�

� � � � � � � � ��� � � � ��� � � % � �����
� � � � � � � � � � � � � � � � � ��� �������� � �&�

�

� � � � �&� � ��� �����
�&��� ��� � � � � � �
	

� � �
� � �&� � � � � � � � � � � � � � � � � � � � � � � � ��� � ����� � � �����

� �
� � ���	� � ��
 � ����� � ��� � � ��� � � � � ( � �����&� � � ���

� � � �$��� � � 7 � �
� ����� � �&�

�

� � � � � ��� 	 � ! � ����� � ��� � � ���
� ( � ��� � � �����
����� � � � � � ��
 ��� � � / ����� � ��� � ��!�!)�
� ����� � �&�

�

� � � � � ����3 � ! � � ��� � ��� � � ���
� ( � � � � � �������
	

����� � �&�
�

� � � � � ��� �	�$���
	

���&�$�
����� � �&�

�

� � � � � ��� 	��	�����
	

� � �
� � �&� � � � � � � �

� � � � � � � � � � � � � ��� � ����� � ����� 3 � � � ����� � � � � 3 � ������� ��� ��� ���&� �
� � � � � � � � 
�
 ��� � � � � �����&� � ���

�

� � � � � � � � ��� � � � ��� � � % � �����
� � � � � � � � � � � � ��� 3.��� ���������
����� � �&�

�

� � � � �&� � ��� ������&��� ��� � � � � � �
	

� � � � � �&� � � � � � � � � � � � � � � � � � � ��� � ����� � ����� 3 � ������� ��� ��� ���&� �
� � � ����� ������� �	�&� � �&�

�

� � � � � � � � ���$���
����� � �&�

�

� � � � � � � ����� � %���� � � � � � ��� �
� � ����� ������� ���&� � ���

�

� � � � � � � � � �$���
	

39



� � � � � �&� � � � � � � �
� � � � � � � � � � � � � � � � � ��� � � ��� � ����� 3 � � � ������� � � � 3 � ������� ��� ��� ���&���

� � � � � � � � 
�
 ��� � � � � �����&� � ���
�

� � � � � � � � ��� � � � ��� � � % � �����
� � � � � � � � � � � � � � � ����� 3 ��� ���������
����� � �&�

�

� � � � �&� � ��� ������&��� ��� � � � � � �
	

� � � � � �&� � � � � � � � � � � � � � � � � � � � � � � ��� � � ��� � ����� 3 � ������� ��� ��� ���&� �
� �

� � ���	� � ��
 � ����� � ��� � � ��� � � � � ( � �����&� � � ���

� � � �$��� � � 7 � �
� ����� � �&�

�

� � � � � ��� 	 �$���
� � � � � � � � � ��� � � � � ��� � � ����� � ����� � � � � � ����� ( � ��� � � �43 ��� ���&� ���
����� � � � � � ��
 ��� � � / ����� � ��� � ��!�!)�
� ����� � �&�

�

� � � � � ����3 �����
� � � � � � � � � ��� � � � � ��� � � ����� � ����� � � � � � ����� ( � ��� � � �)� 3 ��� ���������
	

����� � �&�
�

� � � � � ��� �	�$���
	

���&�$�
����� � �&�

�

� � � � � ��� 	��	�����
	

� � � � � � � � � � � � �
� � � � � � �	� � ��� � � � ��� 3 � � � � � � � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � � � � � � ����� 3 � � � ����� � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � � * � ����� 3 � � � � ����� � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � ��� � ����� 3 � � � � ����� � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � ��% � ����� 3 � � � � ����� � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

40



	

� � � � ' � � � � �
� �

��� ��3 � � � ��� ����� ( �����
� � � � � � � � � � � � �

� � � � � � �	� ��� * � ����� 3 � � � � ����� � � � �
�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	 � �

� � � � � � � � � � � � �
� � � � � � �	� � � � ����� � � ��� 3 � � � � � � � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � � ��� � � ��� 3 � � � � � � � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � ( � � � � ��� 3 � � � � � � � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� ��� � � ����� 3 � � � � ����� � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � � � � � � ��� 3 � � � � � � � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � � ����� � � � ����� 3 � � � ����� � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � ��*�� ( � �
� ��� � � � � � � � ��� � ( � � ��� � ( ���&� � �

� � � � � � � � � � � � �
� � � � � � �	� �&��������� � � ��� 3 � � � � � � � � � � �

�

� � � � � � � 
�
 ��� � � � � �����&� � ���
�

� � � � � � � � ��� � � � ��� � � % � �����
� � ��� � � � � 
�
 � ��� � � � � ��� � � � ��� � ��� � � ��� � � � � ( � � ����� � � � 7 � ���
�

�	�&� � �&�
�

� � � � � � � ��� � � � � � %�� �$���
�
� ��� � ��!�
 ���
� � � � 
 � ����� � � ( � � ����� � � � �$� � � � � ( � � 3 � ��� � � � ���

41



�
� ��� � � 1�
 ���
�	�&� � �&�

�

� � � � � � � � ���
	

���&�$�
�

�	�&� � �&�
�

� � � � � � � � � ����� ���
�
� ��� � ��!�!��
� � � � 
 � ����� � � ( � � ����� � � � �$� � � � � ( � � 3 � ��� � � � ���
�
� ��� � �&1�1 �

	

�&��� ��� � � � � � �
� � �������&� � �

� � � � ��� � � � � ��� � � ����� � ����� 3 � � � � ��� � �
	

� � � � � � � � � � � � �
� � � � � � �	� ��� � � � � ����� 3 � � � ����� � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � � ��� � � ��� 3 � � � � � � � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � * � ����� 3 � � � ������� � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� ��� � � � � ����� 3 � � � ����� � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � � ��� � � ��� 3 � � � � � � � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	� � � ��� � � ����� 3 � � � ����� � � � � �

�

�&��� ��� ���
� � � � ��� � � � � ��� � ������� � � ��� 3 � � � � ���

	

� � � � � � � � � � � � �
� � � � � � �	��� ��� � � % � � ��� 3 � � � � � � � � � � �

�

� � � � � � � 
�
 ��� � � � � �����&� � ���
�

� � � � � � � � ��� � � � ��� � � % � �����

42



����� � �&�
�

� � � � �&� � ��� 	 � � � ! � � ��� � %���� � � � � � � ! � � � �	�����
�&��� ��� � � � � � �

	

	

43



Bibliography

Gough, J. (2002), ‘Stacking them up: A comparison of virtual machines’.
URL: http://docs.msdnaa.net/ark new/Webfiles/whitepapers.htm#virtual

Jones, S. P., Hghes, J., Augustsson, L., Barton, D., Boutel, B., Burton, W., Fasel, J., Hammond, K.,
Hinza, R., Hudak, P., Johnsson, T., Jones, M., Launchbury, J., Meijer, E., Peterson, J., Reid,
A., Runciman, C. & Wadler, P. (1999), Haskell 98: A non-strict, purely functional language,
Technical report.
URL: http://www.haskell.org/onlinereport/

Kennedy, A. & Syme, D. (2002), ‘Design and implementation of generics for the .net common lan-
guage runtime’.
URL: http://docs.msdnaa.net/ark new/Webfiles/whitepapers.htm#generics

Levy, S. (2002), So what’s this .NET thing?, Technical report, www.microsoft.com,
http://www.microsoft.com/technet/columns/ednote/en0102p1.asp.

Meijer, E. & Gough, J. (2002), ‘Technical overview of the common language runtime’.
URL: http://docs.msdnaa.net/ark new/Webfiles/whitepapers.htm#CLR

Perry, N. (2001), Introduction to mondrian, Technical report, www.mondrian-script.org.
URL: http://www.mondrian-script.org/mondrian/doc/mondrian.html

Tolmach, A. (2000), An external representation for the ghc core language (draft for ghc 5.02), Tech-
nical report.
URL: http://haskell.cs.yale.edu/ghc/docs/papers/core.ps.gz


