
Dips and Ceilings: Understanding and Supporting
Transitions to Expertise in User Interfaces

Joey Scarr
1
, Andy Cockburn

1
, Carl Gutwin

2
, Philip Quinn

1

1
Computer Science, University of Canterbury, Christchurch, New Zealand,

{joey, andy}@cosc.canterbury.ac.nz, philip.quinn@canterbury.ac.nz
2
Computer Science, University of Saskatchewan, Saskatoon, Canada, gutwin@cs.usask.ca

ABSTRACT

Interface guidelines encourage designers to include shortcut

mechanisms that enable high levels of expert performance,

but prior research has demonstrated that few users switch to

using them. To help understand how interfaces can better

support a transition to expert performance we develop a

framework of the interface and human factors influencing

expertise development. We then present a system called

Blur that addresses three main problems in promoting the

transition: prompting an initial switch to expert techniques,

minimising the performance dip arising from the switch,

and enabling a high performance ceiling. Blur observes the

user‟s interaction with unaltered desktop applications and

uses calm notification to support learning and promote

awareness of an alternative hot command interface. An

empirical study validates Blur‟s design, showing that users

make an early and sustained switch to hot commands, and

that doing so improves their performance and satisfaction.

Author Keywords

Expertise, novice-to-expert transition, command interfaces.

ACM Classification Keywords

H5.2. [User Interfaces]: Interaction Styles.

General Terms

Human Factors, Experimentation.

INTRODUCTION

Windows, Icons, Menus, Pointer (WIMP) interfaces

mediate most communication between humans and

computers. Their success is partly due to their natural

support for novice users – the phrase „see and point versus

learn and remember‟ [38] describes how novices benefit

from using visual search for salient controls, rather than

retrieving command names from memory or manuals.

However, the very mechanisms that make WIMPs effective

for novices fail to support users as they become more

experienced, and they can trap users in a „beginner mode‟

of interaction that has a low performance ceiling. The

richness and power of human perception, cognition, and

motor action is then constrained to relatively slow and

laborious action. Conversely, interfaces designed for

experts (e.g., keyboard shortcuts or command-lines) allow

high performance ceilings, but only after extensive training.

Although it is clear that these expert interfaces can provide

performance advantages [34], their success in practice has

been limited, and several researchers have reported that

users fail to switch to expert interface methods (e.g., [3, 7,

27]). Furthermore, while there has been considerable

research into interfaces for either novices or experts, there

has been relatively little on the transition to expertise.

We therefore form a framework encapsulating the factors

influencing expertise development, with a focus on those

affecting the switch to expert interface mechanisms. These

factors include lack of knowledge about the availability or

the performance benefits of the alternative UI; concern

about the time or effort required to make the switch; the

prevalence of satisficing [40], in which „good enough‟

strategies are maintained; and fears about the drop in

performance that can occur because the user must „start

from scratch‟ with the new interface. This drop in

performance (called „the dip‟) is particularly important,

because it can deter switching in the first place, but also

because it negatively affects the user‟s first impressions.

The framework suggests that any system attempting to

support a switch to expert interface mechanisms should

have three goals: first, maximize the likelihood that the user

will initiate a switch to the expert modality; second,

minimize the cost of doing so; and third, enable a high

performance ceiling to rapidly reward use.

To investigate supporting these goals, we have developed a

new system (called Blur) that uses calm notification and hot

commands to support a transition from WIMP interaction to

a more efficient command-based interface. Through calm

notifications, Blur provides an immediate and bidirectional

translation between WIMP and command line (CLI)

methods – WIMP inputs are immediately displayed as

equivalent CLI outputs, promoting learning and awareness

of the CLI. Through the hot commands mechanism, Blur

enables CLI control of the interface without altering the

underlying GUI, thereby supporting gradual exploration of

the CLI without requiring users to completely abandon use

of familiar WIMP interaction.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CHI 2011, May 7–12, 2011, Vancouver, Canada.

Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

Figure 1. Performance curves characterising intra and

intermodal performance improvement. Note the postulated

performance dip when switching modalities.

P
er

fo
rm

an
ce

Time

Performance
dip

Ultimate
performance

Extended
learnability

Initial
performance

First modality Second modality

M
o

d
al

it
y

 s
w

it
ch

We carried out a study using repetitive tasks in PowerPoint

to see how well Blur supports users‟ transition to the expert

CLI. Results showed that Blur supported users‟ transition to

the expert interface much better than standard shortcut keys

– all 20 participants switched to Blur within the first three

trials, whereas none switched to built-in Alt-shortcuts. The

study also showed that Blur‟s performance dip was small

and that its ultimate efficiency was faster than the WIMP

and shortcut interfaces.

Blur demonstrates a general and reproducible strategy for

supporting users‟ transition from a WIMP interface to a

CLI-style interface. Blur provides both a mechanism for

learning and promoting the expert interface while the user

carries out WIMP actions, and a means for allowing gradual

exploration and adoption of the higher-performance CLI

interaction. Specifically, we make three contributions on

expertise development:

 A framework of issues influencing expertise development

within and across interface mechanisms.

 Design of Blur, which promotes the transition to expert

interaction through calm notification and hot commands.

 Empirical evidence demonstrating Blur‟s success.

FRAMEWORK & REVIEW OF INTERFACE EXPERTISE

Learnability is consistently identified as a critical

component of usability [13, 31, 37], but as Grossman et al.

[18] observe, there is little agreement over how it can be

defined or measured. Grossman et al. [18] provide a

comprehensive review of definitions, metrics, and

methodologies for assessing learnability, and they suggest a

new protocol for measuring it. However, evaluation

methodologies are applied after an interface has been

designed, and current best-practice guidelines for

supporting expertise are often high level generalisations,

such as „provide shortcuts‟ [31] that provide little direct

guidance or insight into underlying design issues.

This section presents a framework of the interface and

human factors influencing expertise development. Our

focus is on issues of how interfaces can support users‟

transition to expertise, rather than on fundamental issues in

human skill acquisition and strategic thinking; see [1] for a

review of human skill acquisition and [3] for an analysis of

the development of expert interaction strategies.

Intramodal and Intermodal expertise development

The framework adapts Newell and Rosenbloom‟s [30]

power law of practice, using it as a qualitative guideline for

characterisation, rather than a mathematical model. We use

the power curve shown on the left side of Figure 1 to

characterise intramodal expertise development: how user

performance improves over time with a single interaction

modality, subdividing the curve into three segments for

initial performance, extended learnability, and ultimate

performance. These three stages are suggestive of

Anderson‟s [1] model of skill acquisition, which identifies

cognitive, associative, and autonomous stages in which

initial models are formed, followed by establishment of

associations between concepts, finally leading to the

development of autonomous skills.

Many interfaces, however, support more than one

interaction mode for the same task. For our purposes modes

are distinguished by the interaction mechanics used to

control the interface. For example, menu items can be

selected by direct clicking with the mouse, or by activating

their associated hotkeys using the keyboard; similarly, files

and file hierarchies can be manipulated via direct

manipulation (e.g. using Windows Explorer or the Desktop)

or through command line alternatives (such as the file path

entry or a command window).

Our framework characterises intermodal expertise

development by combining two power law curves (shown

on the left and right sides of Figure 1). This characterisation

postulates that users are likely to suffer a performance dip

when switching to a new modality, even if it offers a higher

ultimate performance ceiling. For example, a user who

frequently uses the „bulleted lists‟ toolbar item may decide

to learn the keyboard shortcut, spending time to determine,

memorise, and make autonomous its key sequence.

While the curve characterises the user‟s actual performance

when switching modalities, the user‟s perception of future

performance critically influences whether the modality

switch is made – if users perceive that an interface will be

hard to learn, temporarily slow, or ultimately inefficient

they will ignore it, and thus never attain the high

performance ceiling it actually enables.

Figure 2 summarises the properties of the intra and

intermodal performance curves, and the interface and

human factors affecting them, which are described in the

following sections. The right hand side of Figure 2 also

shows the techniques that our system, called Blur, uses to

influence expertise development. We describe Blur and its

relationship to the framework later in the paper.

Review of intramodal expertise development

Initial performance (intercept)

Interface design for the initial stages of learning is strongly

promoted in most usability guidelines [13, 31, 32, 37]. At

this stage, users are unfamiliar with the interface, and must

Figure 2. Summary facets of intra and intermodal expertise

development, and the human and interface factors affecting

them. Blur’s mapping to the framework is described later.

Modality Curve property Interface/human factors

Mappings and metaphors

Visibility and ready-to-hand

Size of the command set

Effortful learning

Incidental vocabulary learning

Terse, expressive input

Flat command structures

Revisitation/history support

Spatial predictability

Low display demands

Syntactic and semantic differences

Intercept

Gradient

Asymptote

Switch

Intramodal

Intermodal

Satisficing

Blur

Calm notification

Hot commands

Dip

Perception of the new modality

Calm notification

Maintenance Performance with new modality
Hot commands

Exposure and experience

rely on their prior experiences, visual search, and

recognition to find the commands they need.

Mappings and metaphors [31, 33] promote initial interface

familiarity, but supporting such mappings in command

languages is difficult because of the variability in words

used to describe actions [26]. Furnas et al. [15] describe

how this vocabulary problem can be reduced through

aliasing. In hotkey assignment creating meaningful

mappings is further complicated by the limited expressive

capacity of the input language: once „P‟ is assigned to

„Print‟, for example, „Paste‟, „Previous‟, etc., must be

assigned additional modifier keys or less symbolic letters.

Visibility and ‘ready to hand’. The notion that controls

should be visible to be learned is also well expressed in

most usability guidelines, but the corollary of making

novice things visible is that expert things are often

suppressed, reducing the likelihood that they will be

discovered. A related concept is that appropriate interface

controls should be „ready to hand‟ [23], where controls and

feedback are available for use but not obstructing task

completion. Dyck et al. [14] observe that many computer

games achieve the dual objectives of availability without

obstruction through „calm messaging‟, using transient text,

animation, and audio.

Size of the command set. Large command vocabularies are

likely to take longer to learn than small ones. Carroll and

Carrithers [6] exploited this effect with their „Training

Wheels‟ interfaces, which intentionally reduced the

vocabulary size to aid learning. Related ideas were recently

pursued with „multi-layer interfaces‟ [39].

Extended learning (gradient)

Several factors influence the rate at which performance

increases after initial familiarisation. Our review focuses on

interface techniques that improve the efficacy of recall and

on assisting users in establishing a good vocabulary.

Effortful learning. Psychology researchers have proposed

that “deeper” cognitions, which take longer to process,

result in stronger memories [10, 35], and similar effects

have been demonstrated with interfaces [8, 17]. However,

explicitly manipulating the effort of interaction is risky as

users are prone to frustration when training is too difficult

and boredom when activities are mundane.

Incidental learning to extend vocabulary. Psychology

literature also suggests that users should learn interface

components as a side effect of their display while using

other components. Shelton [36] showed that subjects‟

memory in a paired-associate learning task was improved

simply by prior exposure to the stimuli. Jones [22] therefore

hypothesised that hypertext browsing would result in

greater incidental learning than indexed search (due to

exposure to content), but experiments failed to find

significant differences.

Ultimate performance (asymptote)

The final characteristic of the intramodal curve is the

asymptote, or performance ceiling. There is extensive

literature on supporting and understanding expert interface

performance (although it is largely independent of the

processes enabling its attainment). In particular, the seminal

work of Card, Moran and Newell [5] provides strong

predictive models and empirical evidence of „expert

performance of routine tasks‟, including analysis of one

user who repeated the same editing task thousands of times

to study progression to automaticity. Five interface

characteristics for high performance ceilings follow:

Flat command structures. GUIs typically contain more

controls than can be easily displayed at once, necessitating

interface partitions such as windows, tabs, and menu

hierarchies. Navigating through these partitions takes time,

and consequently there are potential performance benefits

in flattening the command structure to make more items

accessible at once. Commands issued by CLIs and hotkeys

are exemplars as they have global interface scope (e.g.

<Ctrl>-C executes „copy‟ regardless of the interface state).

Several research and commercial systems have used CLIs

to improve interface performance: e.g., Quicksilver
1
,

Spotlight
2
, Enso

3
, and GEKA [21]. Although empirical

results for CLI benefits over GUIs have been mixed (e.g.

[42]), it is widely accepted that CLIs enable higher

efficiency, and power users are strong advocates (e.g. [2]).

Terse and expressive. Powerful interfaces communicate a

lot of meaning in rapidly expressed actions. For example, a

single alphabetic character can discriminate 26 commands,

or 52 with case sensitivity; increasing to 2704 with two

case-sensitive characters. However, there is often a tension

between supporting terse, expressive power and meaningful

mappings: for example, Alt-shortcuts in Office 2007 allow

access to most controls, but they are abstract and hard to

remember (e.g, „<Alt> n, nu, t‟ inserts a page number).

1
 http://www.blacktree.com

2
 http://support.apple.com/kb/HT2531

3
 http://humanized.com

Revisitation/history support. Users‟ interactive behaviour is

often repetitive (e.g., command use [16] and web navigation

[41]), and interfaces can aid efficiency by explicitly

supporting repetition. For example, web browser URL

address bars and the Google search box memorise previous

activities and offer type-ahead shortcuts for them: e.g., the

keystrokes „cn<Ret>‟ become a shortcut for a user who

frequently visits CNN‟s website.

Spatial predictability. Studies have demonstrated that

spatial stability allows users to make rapid decisions about

items‟ locations rather than relying on comparatively slow

visual search (e.g. [19]). Despite the desirability of spatial

stability it is often compromised due to display space

constraints – interface controls are often elided and

repositioned as window geometry is manipulated, and this

is necessary because widgets typically do not scale. There

are interesting design opportunities in spatially stable

interfaces that dynamically scale widgets.

Low display demands. A final property of high performance

interfaces is that they help the user focus on their primary

activity, which typically involves their data. WIMPs rely on

visual presentation, which consumes screen real-estate that

might otherwise be used for data. This is critical on small

devices, such as Netbook computers. For example, the

window border, Ribbon, ruler and foot controls in Office

2007 applications consume approximately 195 vertical

pixels, and the default Windows 7 Taskbar consumes

another 30, for a sum of 225 pixels, which is 38% of a 600

pixel Netbook.

Review of intermodal expertise development

Compared to the extensive literature on intramodal

expertise development, there has been much less on the

factors influencing whether, how, and when users switch

from novice to expert mechanisms. Note, our analysis does

not review end-user programming (e.g., [11]) or interface

customisation (see [4] for a good summary), which raise

their own challenges (reviewed in [24] and [28]); although

some of the factors identified below are applicable.

In the following analysis, we address three critical points on

the intermodal performance curve shown in Figure 1: first,

factors influencing the initial switch to a new interface

modality; second, the performance dip that a user is likely

to experience when switching from a familiar interface to

an unfamiliar one; and third, factors influencing the

maintenance of the new modality.

Making an initial switch

Perception of the new modality. As Figure 2 shows, the

probability of switching to a new modality is likely to be

influenced by how the user perceives any future interaction

with the new modality, so all of the intramodal factors

described above play a role. Importantly, though, several

studies have demonstrated that perceived experience differs

from actual (e.g. [12]), and that users can mistrust their

abilities, leading to false assumptions of poor performance

(e.g., [9] showed users predicted poor performance in a

spatial task, but performed well).

Satisficing and optimising for immediate needs. The notion

that users have a tendency to maintain existing strategies

and use what is known and ready to hand in preference to

new and improved ways of working is encapsulated by

several theories, including Simon‟s „satisficing‟ [40] and

„Maslow‟s hammer‟ [29] („to a man with a hammer,

everything looks like a nail‟). In HCI, Carroll and Rossen

[7] named the effect „the paradox of the active user‟, in

which users “are likely to stick with the procedures they

already know, regardless of their efficacy”.

Exposure and experience. Incidental learning, as described

with the intramodal factors, can also be used to promote

learning across modalities by exposing users to alternative

ways of achieving their tasks as a side effect of their

interactions. More forcefully, interfaces can demand that

users experience the new modality by requiring that actions

are completed through it.

Grossman [17] experimented with a variety of schemes for

assisting hotkey learning. These included visual and audio

schemes to expose users to the hotkeys, a delay-based

technique to deter use of the GUI (i.e., making the system

unresponsive for 2 seconds after each selection), and a

technique that forced hotkey use following each menu

selection. Their results showed that forced use and audio

feedback worked well, with 72.8% and 66.6% of

experimental selections being made with hotkeys.

Subjective data showed no significant adverse response to

the audio and forced use.

One concern for hotkey strategies, though, is that

Grossman‟s results suggest that users may only be able to

learn a small hotkey vocabulary. In their experiment 73% of

selections could be completed using six hotkeys, and 83%

with eight, yet the participants‟ mean use was less than

73%. Current desktop applications support hundreds of

commands, and it is unclear how well audio feedback or

enforced use can work in practice.

Performance dip after switching

Semantic and syntactic differences. The size of the

performance dip that occurs after switching to a new

interface modality will be influenced by the magnitude of

the semantic and syntactic differences between the pre- and

post-switch interfaces.

Interface semantics determine the interface and data states

that can be attained with the interface. Frequently, these

states differ across modalities, with one modality

supporting a subset of the other. For example, it is common

for only a subset of controls to be accessible via hotkeys.

Semantic differences are likely to discourage users from

investigating secondary modalities as the effort invested in

seeking new facilities may go unrewarded (when it supports

a subset) or require formation of a new model (when it

supports a superset).

Figure 3. Blur’s default state: a tab at the screen top.

Figure 4. Blur’s calm notification: command name

associated with a GUI action.

Figure 5. Blur’s hot command suggestions.

Interface syntax is determined by the mechanics of control

and the manner in which control elements are combined.

Marking menus [25] are an excellent example of promoting

expertise by minimising the syntactic differences between

novice and expert interaction modes. Their commands are

arranged radially around the cursor, like segments of a pie.

Novices attend the visual feedback and learn the drag-

release movement directions for specific selections, such as

„print is East‟. Experts, however, can use precisely the same

interface syntax (a rapid directional drag and release) to

select items without need for visual feedback.

Maintenance of the new modality

Whether users continue to use a new modality after making

an initial switch depends on the magnitude of the

performance dip they encounter and on their perception of

their future performance with the modality, including how

quickly they expect to outperform the original modality,

and their estimation of their ultimate performance ceiling.

These issues primarily depend on intramodal issues,

described earlier, as shown in Figure 2.

BLUR: USAGE, RATIONALE, AND IMPLEMENTATION

The framework highlights three main challenges that Blur

aims to address in assisting users to make a transition to

expert interaction: promote an initial switch, minimise the

dip in performance, and enable a high performance ceiling.

Figure 2 shows how Blur‟s two main features of calm

notification and hot commands (described below) are

designed to map onto these components of the framework.

Overview of the user experience of Blur

Blur observes and controls interactions with unaltered

desktop applications on Microsoft Windows platforms.

Blur’s calm notification feedback during WIMP use.

Figure 3 shows Blur‟s normal display state, with only a

small translucent tab at the top of the screen displaying the

text „Press <Esc>‟. When the user carries out an interface

action by clicking on an interface control using the mouse,

Blur provides calm notification of an alternative syntax for

achieving the same action – the translucent tab expands

displaying a command name. Figure 4 shows Blur‟s

feedback („Align Left‟) after clicking the button in

Microsoft Word. After one second, the transparent window

gradually contracts back to its tab state. Blur‟s window can

be clicked through, allowing continued manipulation of the

underlying GUI while Blur is visible.

Controlling interfaces with Blur’s hot commands. Blur

allows users to control the focal application, launch new

applications, and manipulate windows using typed CLI hot

commands. The user presses the Escape key to display

Blur‟s translucent window, and command recommendations

are shown in response to each successive typed letter.

Figure 5 shows Blur‟s recommendations after typing

‘<Esc>al’ when Microsoft Word is the focal application:

the „align left‟ command is recommended first and can be

selected by pressing the Return key, but the arrow keys can

be used to move through the recommendations (e.g. „calc‟).

Design rationale

Calm notification

Blur‟s calm notification provides transitory feedback

revealing the command name that is equivalent to each

mouse initiated action. Calm notification is primarily

intended to reduce the tendency to satisfice and to promote

an initial intermodal switch to Blur‟s hot commands.

However as Figure 2 shows we also intend that it will

provide a visually salient and continual reminder of the

availability of the hot command alternative, as well as

supporting incidental learning of the hot commands.

Importantly, we also intend that calm notification will help

users identify that there is a one-to-one correspondence

between each WIMP action and each hot command. This

means that the user‟s mental model of interaction is largely

unaffected by the transition between interface modalities. In

other words, Blur‟s hot command interface does not change

the structural decomposition of tasks into interface actions,

and calm notification is the mechanism to communicate this

absence of change to the user. This consistency is intended

to minimise the performance dip associated with switching

to Blur‟s hot commands.

Hot commands

As Figure 2 shows, Blur‟s hot commands are primarily

designed to support a high performance asymptote, but as

mentioned above they are also designed to provide a one-to-

one mapping to WIMP commands to minimise the

performance dip. This one-to-one relationship is unusual for

CLIs, which normally require a different style of working

typified by „action-object‟ syntax, where data is identified

through parameters following the command.

Blur‟s hot commands are symbolic (provided the original

application designer has assigned meaningful names to

controls), which should aid learning through appropriate

mappings and metaphors. They support a flat command

structure, allowing interface controls to be accessed with a

single command, and eliminating the need to navigate

through tab or menu hierarchies. They are terse and

expressive, allowing unambiguous access to thousands of

controls in a few keypresses. Hot commands also adapt to

the user‟s interaction history by ordering command

recommendations by frequency of use. Finally, Blur‟s

interface consumes very little screen space.

Implementation
4

Blur uses Microsoft‟s UI Automation API
5
 to discover the

GUI control elements that users interact with. All

applications implementing this interface can therefore be

observed and controlled by Blur. When the user clicks an

interface widget Blur intercepts the event to determine the

control under the cursor, retrieving the command name and

the shortcut key sequence that can be used to activate the

control. The action can then be performed by typing the

command into Blur, which automatically translates the

command into corresponding keyboard shortcuts and sends

them to the application, controlling the GUI.

Blur orders command recommendations according to three

candidate classes: exact matches, prefix matches and

substring matches. Within each class, commands are sorted

by frequency of use, and are displayed to the user. Typo

correction is provided by remembering the most likely

candidate at each keypress. If, at any point, the user‟s input

matches an empty set of candidates, the most likely

candidate from the previous keypress is suggested.

Blur‟s command recommendations are also context

sensitive to the focal application. Consequently, the

characters “se” may match “Send” while using an email

system and “select all” when using a word processor.

Context sensitivity has several advantages including fewer

matching commands for any typed string, and reduced

probability of illegal commands (e.g., “Send” is illegal

unless an email composition window is open). Blur also

supports „global‟ interface controls such as window

management and application launching. For example,

window focus can be manipulated by typing any substring

of the window title, (e.g., “in” for “email inbox”). Global

commands are not context sensitive.

Summary of Blur

Blur is primarily designed to encourage an early and

sustained switch to a command line interface. Blur‟s main

mechanisms for supporting this are calm notification and

hot commands, and importantly the hot command interface

provides a one-to-one mapping to the WIMP interface.

Although many previous research and commercial systems

have supported CLIs (e.g., [21]), none have explicitly

investigated the mechanisms used to initiate the modality

switch. Grossman et al. [17] did investigate transitionary

mechanisms, but the end modality was hotkeys, and their

results suggest that hotkey vocabularies may be limited.

4
 Blur is available at: www.cosc.canterbury.ac.nz/blur

5
 http://msdn.microsoft.com/en-us/library/ms747327.aspx

EXPERIMENT: BLUR’S IMPACT ON USERS

We conducted an experiment to answer four key questions

about Blur‟s performance, focusing on the point of modality

transition rather than long term maintenance.

Q1. Do users switch to Blur‟s expert modality?

Q2. How does performance with Blur compare to

performance without it and with other methods?

Q3. How large is the performance dip with Blur?

Q4. What is the subjective response to Blur?

The experiment involved a repetitive series of tasks using

an unaltered version of Microsoft PowerPoint 2007, with

and without Blur running. Participants also completed the

tasks using the Office 2007 <Alt> shortcuts, which allows

comparison between Blur and existing shortcut facilities.

Repetitive tasks were used to compress long term

interaction experiences into the short duration of a lab

study, similar to Grossman‟s [17] study of hotkey learning.

Participants and Apparatus

The 20 participants aged 21 to 36 (mean 25, s.d. 4.4) were

recruited from a local university. They reported using

computers for a mean of 46.7 (s.d. 18.1) hours per week.

The experiment ran on a Windows 7 computer with a

1680×1050, 21" display. The target state for each task was

shown on a sheet of paper placed alongside the computer.

Tasks

Five different PowerPoint slides were created, each

containing five drawn objects of varying sizes and shading

as shown in Table 1. The target state was shown on a sheet

of paper at the side of the keyboard. All target states could

be attained in a minimum of four commands, such as

„Select All‟, „Align Left‟, „Group‟, „Flip Vertical‟.

Participants were instructed to complete tasks as quickly

and accurately as possible. Automatic logs recorded all user

interactions, including task time data.

Procedure

At the start of the experiment participants were given a two

minute introduction to Blur using a PowerPoint slide

containing a single text field. They were instructed to make

the text Bold, Italic, Bulleted and Numbered using the GUI

and to observe Blur‟s feedback, and then repeat the same

actions by typing Blur commands.

The experiment proceeded through five stages, with each

stage using one of Tasks 1-5 shown in Table 1, as follows:

1. familiarisation and training with PowerPoint

2. optional use of Blur (blur)
 counterbalanced

3. normal PowerPoint (wimp)

4. instruction to maximise use of Blur (blur-max)

5. instruction to use <Alt> shortcuts (alt)

Participants repeated the manipulations to move from the

initial to target states five times with Task 1 and twelve

times each in Tasks 2-5. Participants completed NASA-

TLX worksheets [20] and gave comments after Tasks 2-5.

Task 1 was used to familiarise participants with

PowerPoint‟s alignment, rotation, grouping and flipping

controls, with instruction as necessary. Participants then

repeatedly moved from initial to target states five times.

Tasks 2 and 3 were completed with the WIMP and with

Blur (counterbalanced). Before using Blur, participants

were instructed to “complete the tasks as you please.”

 Task 1 Task 2 Task 3 Task 4 Task 5

Initial

Target

Table 1: Initial and target states for the five tasks.

Task 4 was completed following explicit instruction to “use

Blur’s facilities as much as possible”. This condition was

included because we wanted to be certain to obtain

measurements of Blur‟s performance. We could not rely on

Tasks 2/3 to produce this data because participants had the

option to ignore Blur entirely.

Task 5 was used to analyse user performance with

Microsoft Office‟s built in <Alt> shortcut navigation

controls. This task was included because it was possible

that the existing shortcut facilities would outperform Blur.

Prior to completing these tasks participants received two

minutes instruction on <Alt> shortcuts and practiced with

the same text tasks used for familiarisation with Blur.

Results

Q1. Do users switch to Blur’s expert modality?

In Task 2/3, where participants were instructed to complete

tasks however they liked, all chose to use Blur. The mean

trial number at which participants switched to Blur was

1.65 (s.d. 1.0), with 55% of participants using Blur in the

first trial, increasing to 90% in the second, 95% in the third,

and 100% by the fifth. Two of the participants briefly

returned to using the WIMP after their first use of Blur, but

switched back and continued using Blur through the final

trials (we suspect that these participants were confirming

that Blur was faster than the WIMP). In contrast to the

successful switch to Blur, none of the participants tried to

use <Alt> shortcuts. Several used prior knowledge of Ctrl-a

for „select all‟, and nearly half used Ctrl-g for „group‟, but

many expressed surprise similar to the statement “there’s

no shortcut for group” after visually inspecting the menu

(there is, but it‟s not shown in the UI).

Q2. How does performance with Blur compare to
performance without it and with other methods?

Trial times in Tasks 2-5 were analysed in a 4×3 repeated

measures ANOVA for within-subjects factors interface

(wimp, blur, blur-max, and alt) and block (repetitions 1-3,

4-7, and 8-11, with trial 0 discarded as preparation).

Results show a significant effect of interface (F3,57=97.9,

p<.001), with means of 9.72, 9.92, 7.54, and 19.97 seconds

for wimp, blur, blur-max and alt respectively (see Figure 6).

There is also a significant effect of block (F2,38=77.9,

p<.001), with participants‟ mean performance improving

from 15.2 seconds in the first three trials to 10.7 seconds in

trials 4-7 and 9.5 seconds in trials 8-11. Finally, as Figure 6

suggests, there is a significant interface × block interaction

(F6,114=15.3, p<.001), which is best explained by the

relatively small cross block performance improvement with

blur-max (due to prior experience to Blur) contrasting with

the large improvement with alt.

Figure 6. Mean task times with the four interfaces across the

three blocks (1, 2, 3). Error bars ±1 s.e.m.

A planned comparison between wimp and blur-max in the

final block (repetitions 8-11, where participants are

reaching their maximum level of performance) shows a

significant difference (F1,19=7.6, p<.05) with blur-max 17%

faster (6.77 seconds, s.d. 2.4) than the normal GUI controls

(wimp, 8.14 seconds, s.d. 1.45). A final data point

indicating that Blur enabled higher levels of performance is

that 90% of the participants had their fastest task

completion time when using Blur.

Performance with Alt-shortcuts was particularly slow, and

participants commented that they were „painful’ and

„awful’. Participants also commented about the difficulty of

learning the shortcuts due to their lack of symbolism (e.g.

„<alt> h, g, a, l‟ for „align left‟). 35% of the participants

stated that they were aware of Alt-shortcuts before the

experiment, but none attempted to use them except during

their enforced use in Task 5.

Q3. How large is the performance dip with Blur?

Our framework postulates that changing modality causes a

performance dip, so we analysed performance data at the

point that users switched to using Blur. Mean trial

completion times are shown in Figure 7, with the solid line

showing times immediately preceding and following the

switch in the blur condition, and the dashed line showing

data for the first four trials in the wimp condition for

comparison. The figure shows that Blur caused a small

performance dip in the first post-switch trial (from 20.5 sec

to 20.9 sec), but that this loss was quickly recovered with

0

5

10

15

20

25

30

wimp blur blur-max alt-shortcuts

M
e

an
 ta

sk
 t

im
e

 (s
e

co
n

d
s)

Interface

Block 1 2 3

performance matching that of the wimp condition by the

third post-switch trial and eventually outperforming it.

Importantly, Blur‟s performance dip was relatively small,

and consequently the participants were not discouraged

from continuing to use it. The performance dip with alt, in

contrast, was large (Figure 6), and participants would have

immediately discontinued use if not required to do so.

Figure 7. Evidence of Blur’s small ‘performance dip’, shown

by the slight increase in task time in trials preceding and

following the switch to using Blur (including trial 0).

Q4. What is the subjective response to Blur?

Participants responded positively to Blur, and provided

many suggestions for improvements. At the end of the

experiment they ranked the three interfaces (blur, wimp and

alt) in order of preference, with 1 most preferred, and 3

least. Twelve ranked blur first, 6 wimp first, and 1 Alt-

shortcuts, giving a significant rankings difference

(Friedman 2

r =18.9, p<.001), with means of 1.37 (s.d. 0.5),

1.84 (0.69) and 2.79 (0.54) for blur, wimp and alt.

We measured how intrusive participants found Blur‟s calm

notification. One participant stated that it was “annoying”,

and another that it was “distracting, but easily ignored”.

The mean response to the question “Blur‟s feedback was

distracting” (1 disagree, 5 agree) was 2.45 (1.4).

 Wimp Blur Alt 2

r
 Sig

Mental Demand 2.45 (1.1) 2.85 (0.9) 4.45 (0.8) 23.5 <.001
Physical Demand 3.15 (1.3) 2.5 (1.1) 3.1 (1.1) 3.8 =0.15
Hurried 2.85 (1.0) 2.8 (1.1) 3.5 (1.1) 3.7 =0.16
Successful 3.95 (0.7) 4.1 (0.4) 2.9 (0.9) 14.8 <.001
Hard work 2.85 (1.3) 3.2 (0.8) 4.3 (0.7) 16.1 <.001
Insecure 2.3 (1.4) 2.2 (0.7) 4.2 (1.0) 19.2 <.001

Efficient 2.9 (1.3) 4.3 (0.7) 2.1 (1.2) 20.1 <.001
Easy to learn 4.1 (1.1) 4.1 (0.8) 2.6 (1.2) 13.7 <.005
Error prone 2.5 (1.1) 2.8 (1.0) 4.35 (0.9) 19.1 <.001

Table 2. Mean responses (sd) to 5 point Likert-scale questions.

NASA-TLX worksheet responses, summarised in Table 2,

show significant interface differences for mental demand,

perceived success, amount of work, and insecurity, but the

main cause is the poor performance of Alt-shortcuts, rather

than differences between wimp and blur conditions. Table 2

also shows higher efficiency ratings for Blur‟s (mean 4.3)

than wimp (2.9) or alt (2.1). Mean ratings for Blur‟s ease of

learning were the same as the normal interface (4.1), despite

their brief exposure to it; their rating of Alt-shortcuts

learnability was much worse (2.6).

The final stage of the experiment involved asking

participants to switch between windows and launch

applications, performing minor operations in each:

conducting an image search in Firefox, copying one of the

resultant images to Paint, cropping the image, pasting it into

a Microsoft Word document, checking their email inbox,

then repeating the process with a different image search.

They were instructed to complete the tasks in any way they

liked, and that Blur was available.

The participants made extensive use of Blur throughout the

task. We noted a tendency for users to persist with the

mouse after using it to complete a task (e.g. cropping an

image), and one user commented that “it’s easy to forget

that Blur’s available, but the fading window reminds you”

(referring to calm notification). Participants commented that

“I especially like it opening and running programs instead

of the start menu” and that “I liked fast switching”.

Finally, two participants stated a desire for recency ordering

in command recommendations: “The ranking system should

give higher precedence to the last used command” and

“Items should be promoted faster”.

DISCUSSION

Blur‟s calm notification and hot commands interface was

designed to promote an initial modality switch, to minimise

the performance dip associated with doing so, and to offer a

high performance ceiling (perceived and actual). The

experiment validated the design, showing an early switch to

hot commands, that the performance dip was small, that

users continued to use Blur, that it enabled higher levels of

performance than the normal UI and Alt-shortcuts, and that

users preferred it.

Why did Blur succeed?

Blur is a realistic system that works with unaltered desktop

applications. We designed calm notification and hot

commands as generalisable and scalable transitionary

mechanisms that could work in real work settings.

Furthermore, our framework suggests that modality

switches depend on many factors, including perception of

the efficiency of expert modalities. Consequently, it is

difficult to isolate the independent contribution of Blur‟s

design elements in supporting the modality switch – while

the gestalt design succeeds, we do not know whether this is

due to the perceived efficiency of hot commands, the ready-

to-hand reminder provided by calm notification, the one-to-

one semantic relationship of hot commands, and so on. The

participants‟ comments similarly highlight different aspects

of Blur‟s perceived and actual utility. We believe that calm

notification and hot commands are useful and generalisable

approaches for interfaces wishing to support a transition to

expertise, but further work is needed to tease out their

independent and interacting value.

Does Blur work in the real world?

The experiment used repetitive tasks to compress long term

command use into the short duration of a lab study. This is

a common strategy for examining interface learning (e.g. [5,

5

10

15

20

25

Pre-switch Post-switch 1 Post-switch 2 Post-switch 3 Blur-max

M
e

an
 t

as
k

ti
m

e
 (s

e
co

n
d

s)

Switching to Blur

Wimp

17]), but it raises concerns that the findings may not

generalise to real use, discussed below.

Limited vocabulary. The study used a small command

vocabulary, so there are risks that Blur may not generalise

to larger command sets (in the same way that Grossman‟s

results suggest that hotkey vocabularies may be limited

[17]). Two issues encourage us to believe that Blur‟s

approach is robust to large vocabularies. First, the final

stage of the experiment involved relatively unconstrained

interaction within and across applications. The participants

continued to use Blur throughout these activities, and were

enthusiastic about its support for window switching and

application launching, which were not heavily repeated.

Second, we believe that the strategies of one-to-one

Blur/GUI command relationship and of populating

command names from the GUI create a strong and symbolic

mapping that helps users anticipate commands. For

example, Blur‟s command for is „subscript‟ (or „sub‟),

and the Zoom control is „zoom‟ (or „zo‟), but the built-in

hotkeys are much less symbolic and (we believe) harder to

remember: „Ctrl+=‟ (or „Alt+h5‟) and „Alt+wq‟.

Novelty bias. Participants in the experiment will have

inferred that we were interested in their performance with

Blur, which may have drawn them to use it. We counter this

concern in two ways. First, Alt-shortcuts were also novel to

most of our participants, but their response was strongly

negative. Second, any user who installs a system like Blur

is also likely to be curious about its behavior.

Not real work. Real work has different engagement and

time pressure than experimental tasks. This is true of nearly

all controlled experiments, but is particularly important in

our experiment where we are concerned about reducing the

tendency to satisfice. We believe that our participants were

genuinely trying to optimize their performance, but

understand that this may have artificially eliminated some

of the tendency to satisfice. We will examine Blur‟s logs of

real use in the coming year.

Our own experiences. Our concerns about real-world use

are eased by our own experiences in using Blur over the last

few months. Two of the authors are enthusiastic users (the

other two use Macs and cannot run it), particularly for two

activities and settings. First, application launching and

window switching is extremely rapid (e.g., „Esc+in‟ to

check the email inbox and „Esc+fi‟ to launch Firefox).

Second, Blur‟s control of applications is invaluable when

using a laptop computer without a mouse (e.g., on planes, in

waiting rooms, etc.) We have found that the threshold for

using Blur is influenced by the pointing device. When using

a mouse, the threshold often favours Blur, but not when

tasks predominantly involve direct manipulation (e.g.,

drawing). However, when using a less precise device, like a

trackpad, Blur‟s benefits are substantial.

How can Blur be improved and generalised?

Improvements to Blur’s CLI trigger. Four participants

stated that using the Escape key was awkward, and that they

would prefer to assign their own key, such as Alt. One also

stated that Blur‟s hot command window should remain

open until explicitly dismissed, allowing multiple

commands with a single Escape keypress.

Alternative implementations of calm notification and hot

commands. Many tasks are predominantly mouse driven

(e.g. CAD drawing), so hot commands would require a

homing action away from the mouse. Blur could be adapted

to support other expert modalities such as a ListMap [19],

which provides a spatially stable miniaturized

representation of UI controls (flattening the interface

hierarchy). Calm notification could alert users to the

location of selected controls within the ListMap. We are

currently implementing this approach.

Removing limitations of the platform. Blur‟s support is

limited by the capabilities of the UI Automation API and by

how applications implement it. Many applications do not

fully or properly implement the API, which requires Blur to

implement work-arounds, such as parsing the control tree

when an application is launched and dynamically detecting

shortcuts for applications that do not properly connect the

control tree. These issues increase implementation

complexity and constrain functionality, but software

vendors like Microsoft and Apple could ease the limitations

by refining their scripting and automation technologies, and

by promoting their use in applications.

Despite these limitations, Blur is a useful tool in its current

implementation, and we have been using it successfully in

unaltered Windows environments for several months.

CONCLUSIONS

Many office workers use their desktop applications for

hundreds of hours each year, yet there is tendency to resist

making the transition to expert strategies that could

dramatically improve their performance.

This paper provided a framework for understanding the

human and interface factors influencing the transition to

expert interface modalities. We also described the design

and evaluation of Blur, which uses calm notification of hot

commands to prompt an initial switch to its expert modality,

to minimise the performance dip associated with doing so,

and to enable a high performance ceiling. Experimental

participants made an early and sustained switch to Blur‟s

hot commands, they benefited from doing so, and they

preferred it to the normal interface.

There are several directions for further work. We will

experiment with ListMap strategies for mouse-driven expert

interaction, and with associated spatial means for calm

notification. We will also refine and extend Blur‟s

capabilities to assure that it is robust and functionally rich

both within and across a wide range of applications. We

will continue to empirically assess how its design features

contribute to the initial modality switch, and finally, we will

deploy Blur and assess its real-world use through field

studies and log analyses.

REFERENCES

1. Anderson, J. Learning and Memory. Wiley, NY, 1995.

2. Barrett, R., Kandogan, E., Maglio, P., Haber, E.,

Takayama, L. and Prabaker, M. Field studies of

computer system administrators. in Proc. CSCW'04,

ACM, (2004), 388-395.

3. Bhavnani, S. and John, B. The Strategic Use of Complex

Computer Systems. HCIJ 15 (2000), 107-137.

4. Bunt, A., Conati, C. and McGrenere, J. Supporting

Interface Customization using a Mixed-Initiative

Approach. in Proc. IUI '07, ACM, (2007), 92-101.

5. Card, S.K., Moran, T.P. and Newell, A. The Psychology

of HCI. Lawrence Erlbaum, 1983.

6. Carroll, J. and Carrithers, C. Training Wheels in a User

Interface. Comms. ACM 27, 8 (1984), 800-806.

7. Carroll, J. and Rossen, M. Paradox of the active user. in

Carroll, J. ed. Interfacing Thought: Cognitive Aspects of

HCI, MIT Press, 1987, 80-111.

8. Cockburn, A., Kristensson, P., Alexander, J. and Zhai, S.

Hard Lessons: Effort-Inducing Interfaces Benefit Spatial

Learning. in Proc. CHI, (2007), 1571-1580.

9. Cockburn, A. and McKenzie, B. Evaluating the

Effectiveness of Spatial Memory in 2D and 3D Physical

and Virtual Environments. in Proc. CHI’02, ACM,

(2002), 203-210.

10. Craik, F. and Lockhart, R. Levels of processing: A

framework for memory research. Journal of Verbal

Learning and Verbal Behavior 11 (1972), 671-684.

11. Cypher, A., Dontcheva, M., Lau, T. and Nichols, J. No

Code Required. Morgan Kaufmann, 2010.

12. Czerwinski, M., Horvitz, E. and Cuttrell, E. Subjective

Duration Assessment: An Impicit Probe for Software

Usability. in Proc. IHM-HCI, (2001).

13. Dix, A., Finlay, J., Abowd, G. and Beale, R. Human-

Computer Interaction, Prentice Hall. (1993).

14. Dyck, J., Pienelle, D., Brown, B. and Gutwin, C.

Learning from Games: HCI Innovations in

Entertainment Software. in Proc. GI, (2003).

15. Furnas, G.W., Landauer, T.K., Gomez, L.M. and

Dumais, S.T. The vocabulary problem in human-system

communication. CACM 30, 11 (1987), 964-971.

16. Greenberg, S. and Witten, I. Supporting Command

Reuse. IJMMS. 39 (1993), 353-390.

17. Grossman, T., Dragicevic, P. and Balakrishnan, R.

Strategies for Accelearating On-line Learning of

Hotkeys. in Proc. CHI'07, ACM, (2007). 1591-1600.

18. Grossman, T., Fitzmaurice, G. and Attar, R. A survey of

software learnability. in Proc. CHI, (2009). 649-658.

19. Gutwin, C. and Cockburn, A. Improving List Revistation

with ListMaps. in Proc. AVI'06, ACM, (2006), 396-403.

20. Hart, S. and Staveland, L. Development of NASA-TLX.

in Hancock, P. and Meshkati, N. eds. Human Mental

Workload, 1988, 139-183.

21. Hendy, J., Booth, K. and McGrenere, J. Graphically

Enhanced Keyboard Accelerators for GUIs. in Proc.

Graphics Interface, (2010).

22. Jones, T. Incidental learning during information

retrieval: a hypertext experiment. in Maurer, H. ed.

Computer Assisted Learning, Springer, 1989, 235-251.

23. Karat, J., Karat, C. and Ukelson, J. Affordances,

motivation and the design of user interfaces. CACM 43,

8 (2000), 49-51.

24. Ko, A., Myers, B. and Aung, H. Six Learning Barriers in

End-User Programming Systems. in Proc. VL HCC’04,

IEEE, (2004), 199-206.

25. Kurtenbach, G. and Buxton, B. The Limits of Expert

Performance Using Hierarchic Marking Menus. in Proc.

InterCHI'93, (1993), 482-487.

26. Landauer, T.K., Galotti, K.M. and Hartwell, S. Natural

command names and initial learning: a study of text-

editing terms. Comms. ACM 26, 7 (1983), 495-503.

27. Lane, D.M., Napier, H.A., Peres, S.C. and Sandor, A.

Hidden costs of graphical user interfaces. I. J. HCI 18, 2

(2005), 133-144.

28. Mackay, W. Triggers and barriers to customizing

software. in Proc. CHI’91, ACM, (1991), 153-160.

29. Maslow, A. The Psychology of Science: A

Reconnaissance. Harper & Row, New York, 1966.

30. Newell, A. and Rosenbloom, P.S. Mechanisms of Skill

Acquisition and the Law of Practice. in Anderson, J. ed.

Cog. Skills & Acquisition, Erlbaum,, 1981, 1-55.

31. Nielsen, J. Usability Engineering. Morgan Kaufmann,

San Francisco, 1993.

32. Norman, D. Design principles for Human-Computer

Interfaces. in Proc. ’CHI 83, 1983, 1-10.

33. Norman, D. The Psych. of Everyday Things (1988).

34. Odell, D., L., Davis, R., C., Smith, A. and Wright, P., K.

Toolglasses, marking menus, and hotkeys: a comparison

of one and two-handed command selection techniques.

in Proc. Graphics Interface, (2004), 17-24.

35. Schmidt, R. and Bjork, R. The Conceptualizations of

Practice. Psychological Science 3, 4 (1992), 207-217.

36. Shelton, D. and Newhouse, R.C. Incidental Learning in a

Paired-Associate Task. Journal of Experimental

Education 50, 1 (1981), 36-38.

37. Shneiderman, B. Designing the User Interface, Addison

Wesley, 1992.

38. Shneiderman, B. Direct Manipulation: A Step Beyond

Programming Languages (excerpt). in Baecker, et al..

Readings in HCI, 1987, 461-467.

39. Shneiderman, B. Promoting universal usability with

multi-layer interface design. in Proc. Universal

Usability, ACM, (2003), 1-8.

40. Simon, H. Theories of Decision-Making in Economics

and Behavioral Science. American Economic Review 49,

3 (1959), 252-283.

41. Tauscher, L. and Greenberg, S. How People Revisit

Web Pages. IJHCS. 47, 1 (1997), 97-138.

42. Whiteside, J., Jones, S., Levy, P. and Wixon, D. User

Performance with Command, Menu, and Iconic

Interfaces. in Proc. CHI’85, ACM, (1985), 185-191.

