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Abstract

We formalise the modal operators from the concurrent dynamic logics of Peleg, Nerode
and Wijesekera in a multirelational algebraic language based on relation algebras and power
allegories, using relational approximation operators on multirelations developed in a compan-
ion article. We relate Nerode and Wijesekera’s box operator with a relational approximation
operator for multirelations and two related operators that approximate multirelations by
different kinds of deterministic multirelations. We provide an algebraic soundness proof of
Goldblatt’s axioms for concurrent dynamic logic and one for a multirelational Hoare logic
based on Nerode and Wijesekera’s box as applications.

1 Introduction

This is the third article in a trilogy on the inner structure of multirelations [FGS23b], the deter-
minisation of such relations [FGS23a] and their algebras of modal operators.

Multirelations are relations of type X 7→ PY , which model alternating nondeterminism. We
contribute to a line of work on modal algebras of multirelations [FS15, FS16] related to Peleg’s
concurrent dynamic logic [Pel87], which has a multirelational semantics, and on algebraic languages
for multirelations [FKST17]. These languages are extensions of relation algebras [Sch11] and
boolean power allegories [FŠ90] with specific operations for multirelations.

Our main motivation has been the algebraic formalisation of Nerode and Wijesekera’s modal
box operator [NW90] for concurrent dynamic logic. In dynamic logics, relational modal box
operators

[S]rQ = {a ∈ X | ∀b ∈ Y. Sa,b ⇒ b ∈ Q}
for the relation S : X 7→ Y and the set Q ⊆ Y typically express correctness specifications of
relational programs: [S]rQ determines the set of states from which every terminating execution
of program S must be in the set Q. Yet Peleg’s multirelational box operator

[R]∗Q = {a | ∀B. Ra,B ⇒ B ∩Q ̸= ∅}

fails to capture the correctness of the multirelational program R : X 7→ PY in the presence of
non-terminating elements of the form (a, ∅) [NW90]. Nerode and Wijesekera therefore propose an
alternative multirelational box

[R]αQ = {a | ∀B. Ra,B ⇒ B ⊆ Q}.

Goldblatt has subsequently reduced it to a relational box, [R]αQ = [α(R)]rQ, approximating the
multirelation R : X 7→ PY by the relation α(R) : X 7→ Y given by

α(R) = {(a, b) | b ∈
⋃

{B | (a,B) ∈ R}},

in which the alternating structure of R has been atomised. But how can [−]α and α(−) be
formalised in an algebraic multirelational language? Which operations and constructs are needed
for expressing it and for studying its relationship to [−]∗?

1



A key observation is that Goldblatt’s map α : (X 7→ PY ) → (X 7→ Y ) can be expressed using
fundamental concepts of power allegories. For any multirelation R : X → PY ,

α(R) = R∋,

the relational composition of R with the converse of the element-(multi)relation ∈ : Y 7→ PY .
Likewise we can define a new De Morgan dual diamond operator ⟨−⟩α = ⟨−⟩r ◦ α. Yet the
combination of [−]α with Peleg’s multirelational diamond ⟨−⟩∗, which is used in Wijesekera and
Nerode’s as well as in Goldblatt’s concurrent dynamic logics, and the study of the relationships
between the different modal operators requires further multirelational operations, including the
Peleg composition of multirelations. Due to the complexity of their interactions we consider them
in concrete extensions and enrichments of the category Rel, but with a view to future axiomatic
approaches, and therefore by and large through algebraic proofs.

Modal operators on relations or multirelations usually map relations X 7→ Y or multirela-
tions X 7→ PY to functions or “predicate transformers” PY → PX. Modal diamonds then
arise as relational or multirelational preimage operations and modal boxes as their De Morgan
duals. Transformers PX → PY are obtained by opposition. These preimages can be expressed
algebraically using relational and multirelational domain operations together with relational or
Peleg composition. Alternatively, via the isomorphism between relations X 7→ Y and functions
X → PY , predicate transformers PX → PY can be obtained as Kleisli extensions of Kleisli
arrows in the powerset monad on Set. Similarly, we can map multirelations X 7→ PY to “re-
lational predicate transformers” PX 7→ PY , using a Kleisli lifting for multirelations introduced
in [FKST17], while relations X 7→ Y are sent to such transformers by the relational image functor
of power allegories. Predicate transformers PY 7→ PX can again be obtained via opposition. The
graph functor translates these transformers from Set to Rel.

While these constructions of modalities depend only on concepts of power allegories and on
Peleg composition, the relationships between the different modal operators require closure and
duality properties of the inner structure of multirelations and notions of inner determinism and
inner functionality (or univalence), which have been studied in the first two parts of this tril-
ogy [FGS23b, FGS23a]. Here we harvest the concepts and results sown in the previous parts to
obtain the results outlined above. Our main contributions of this article are part of a conceptual
development rather than one or several main theorems. As a first application, this development
allows us to prove soundness of a variant of Goldblatt’s axiomatisation of concurrent dynamic logic
and explain from a structural point of view why and how one of Goldblatt’s original axioms needs
to be repaired. Using this repaired axiomatisation we present our second application: a sound-
ness proof for a Hoare logic for multirelational programs, where validity of partial-correctness
specifications (“Hoare triples”) is encoded using Nerode and Wijesekera’s box.

Set-theoretic reasoning with multirelations is often tedious; manipulating Peleg’s modal oper-
ators sometimes requires the axiom of choice. Algebraic reasoning has the potential to tame this
complexity and support proof automation with machines. As in [FGS23b, FGS23a], we have used
the Isabelle/HOL proof assistant to formalise and check many results in this article, see [GS23],
yet without aiming at a complete formalisation. Our article is therefore self-contained without the
Isabelle components.

2 Relations and Multirelations

We start with recalling briefly the basics of binary relations and multirelations, building on the
first two articles this trilogy [FGS23b, FGS23a]. Our multirelational language is closely related
to allegorical and relation-algebraic approaches [SS89, Sch11, FŠ90, BdM97, FKST17]. It blends
relation-algebraic concepts with those of boolean power allegories and adds specific concepts for
multirelations that have been studied in the first two articles in this trilogy [FGS23b, FGS23a].
We recommend consulting [FGS23b] for definitions and explanations of the basic multirelational
concepts used in this article, and [FGS23a] for background on power allegories. Standard relation-
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algebraic concepts are introduced in the first two articles in the triology as well, but see [SS89,
Sch11] for further details. We present more precise links to [FGS23b, FGS23a] across this section.

As mentioned in the introduction, we work in principle in enrichments of the category Rel
with sets as objects and concrete relations as arrows. We complement set-theoretic definitions
by algebraic ones whenever possible and show algebraic proofs whenever we can. We also list all
relational and multirelational concepts with respect to a small basis in Appendix A, which extends
similar lists in the two predecessor articles. But neither do we have a coherent set of axioms for
these concepts in the style of allegories or relation algebras, nor have we attempted to classify our
theorems with respect to the concepts and laws they require.

2.1 Binary relations

We write X 7→ Y for the homset Rel(X,Y ), IdX for the identity relation on X, ∅X,Y for the
least and UX,Y for the greatest element in X 7→ Y , −R for the complement of R and S − R for
the relative complement S ∩ −R, RS for the relational composition of relations R, S of suitable
types, R/S and R\S for the left and right residuals of R and S, and R⌣ for the converse of R.
We frequently need the modular law RS∩T ⊆ (R∩TS⌣)S and the properties T\S = (S⌣/T⌣)⌣,
T/S = −(−TS⌣) and T\S = −(T⌣(−S)) of residuals.

Set-theoretically, for R : X 7→ Y and S : Y 7→ Z,

RS = {(a, b) | ∃c. Ra,c ∧ Sc,b}, IdX = {(a, a) | a ∈ X}, R⌣ = {(b, a) | Ra,b}.

Further, for T : X 7→ Z and S : Y 7→ Z,

T/S =
⋃

{R : X 7→ Y | RS ⊆ T}.

We also need the following concepts: the symmetric quotient T ÷ S : X 7→ Y , defined as
T ÷S = (T\S)∩ (T⌣/S⌣), tests, which are partial identity relations R ⊆ Id , and whose relational
composition is intersection, and the domain map dom : (X 7→ Y ) → (X 7→ X) defined by

dom(R) = IdX ∩RR⌣ = IdX ∩RUY,X = {(a, a) | ∃b. Ra,b}.

Domain elements and tests form the same full subalgebra of Rel(X,X) for any X, a complete
atomic boolean algebra. The boolean complement of a test P is ¬P = Id − P .

Deterministic relations play an important role in our work. The relation R : X 7→ Y is

� total if dom(R) = IdX , or equivalently IdX ⊆ RR⌣,

� univalent, or a partial function, if R⌣R ⊆ IdY ,

� deterministic, or a function, if it is total and univalent.

Functions as deterministic relations in Rel are of course graphs of functions in Set. We use the
relational law PQ ∩ S = (P ∩ SQ⌣)Q for univalent Q [SS89] in calculations.

Our definitions of modal operators and proofs for them are based on concepts from power
allegories, including monadic concepts in relational form [FŠ90, BdM97]. We summarise them in
the following; see [FGS23a, Section 2.1] for details. The isomorphism between relations in X 7→ Y
and nondeterministic functions in X → PY in Set can be expressed in Rel by taking graphs.

The power transpose
Λ(R) = R⌣ ÷ ∈Y = {(a,R(a)) | a ∈ X}

maps relations X 7→ Y to functions in X 7→ PY , where ∈Y : Y 7→ PY is the membership relation
on Y , which relates each element of Y with the subsets of Y that contain it.

In the other direction, relational postcomposition with the converse of ∈Y , the has-element
relation ∋Y : PY 7→ Y , maps relations in X 7→ PY to relations in X 7→ Y . We henceforth write
α = (−)∋. This function plays an important role in this article. It satisfies

α(R) = {(a, b) | b ∈
⋃

R(a)}.

3



We also need the relational image functor P : (X 7→ Y ) → (PX 7→ PY ) defined by

P(R) = Λ(∋XR),

which satisfies P(R) = {(A,R(A)) | A ⊆ X}. It codes the relational image, given by the covariant
powerset functor in Set, as a graph. It is deterministic by definition.

The unit and multiplication of the monad of the powerset functor in Set are recovered in Rel
as ηX : X 7→ PX and µX : P2X 7→ PX such that ηX = Λ(IdX) = {(a, {a}) | a ∈ X} and
µX = P(∋X).

Apart from tests we need the power test P∗ : PX 7→ PX of any test P ⊆ IdX , defined as

P∗ = (∈X\P∈X) ∩ IdPX

in [FKST17]. Equivalently, it can be expressed as

P∗ = (∈X\PUX,PX) ∩ IdPX = {(A,A) | ∀a ∈ A. (a, a) ∈ P}.

Intuitively, if we view the test P as a set, then P∗ = {(A,A) | A ⊆ P}. Obviously, P∗ ⊆ IdPX =
(IdX)∗.

Finally, for manipulating multirelations, we need

� the subset relation ΩY = ∈Y \∈Y = {(A,B) | A ⊆ B ⊆ Y } and

� the complementation relation C = ∈Y ÷−∈Y = {(A,−A) | A ⊆ Y }.

2.2 Multirelations

A multirelation is an arrow X 7→ PY in Rel and therefore a doubly-nondeterministic function
X → P2Y in Set. Multirelations allow two levels of nondeterminism and hence two levels of
choice: an outer or angelic level given by elements (a,B) and (a,C) of a multirelation, and an
inner or demonic level given by the elements b ∈ B for any (a,B). See [FGS23b] and the references
therein for examples and applications.

The Peleg composition [Pel87] ∗ : (X 7→ PY ) × (Y 7→ PZ) → (X 7→ PZ) can be defined
in two steps from the Kleisli lifting (−)P : (X 7→ PY ) → (PX 7→ PY ) and the Peleg lifting
(−)∗ : (X 7→ PY ) → (PX 7→ PY ) of multirelations [FKST17]:

RP = P(α(R)), R∗ = dom(R)∗
⋃

S⊆dR

SP , R ∗ S = RS∗,

where, for R,S : X 7→ Y , S ⊆d R if S is univalent, dom(S) = dom(R) and S ⊆ R.
Expanding definitions,

RP =
{

(A,B) | B =
⋃

R(A)
}
,

R∗ =
{

(A,B) | ∃f : X → PY. f |A ⊆ R ∧B =
⋃

f(A)
}
,

R ∗ S =
{

(a,C) | ∃B. Ra,B ∧ ∃f : Y → PZ. f |B ⊆ S ∧ C =
⋃

f(B)
}
.

The Kleisli lifting is the multirelational analogue of the Kleisli lifting or Kleisli extension in
the Kleisli category of the powerset monad; see [FGS23a, Section 2.2] for details. It can also be
seen as the relational image of the relational approximation of a given multirelation using the map
α. By definition, Kleisli liftings of multirelations are functions in Rel. Peleg and Kleisli liftings
coincide on deterministic multirelations: R∗ = RP if R is deterministic [FKST17].

Remark 2.1. If R : X 7→ PY relates an element a ∈ X with a set B ⊆ PY , and if S : Y 7→ PZ
relates each b ∈ B with some Cb ∈ Z, then the Peleg composition R ∗ S relates a with

⋃
b∈B Cb.

The choice function f : Y → PZ in the definition above corresponds to the univalent multirelation
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Y 7→ PZ included in R in the algebraic definition of Peleg lifting and it captures the dependency
of the set Cb in the codomain of S on the b ∈ B from the codomain of R. As multirelations provide
a model for alternating nondeterminism, it is no surprise that their Peleg composition corresponds
to the composition of transition relations of alternating automata [FS15].

The Peleg lifting thus computes the set of all (B,
⋃

b∈B Cb) such that for all b ∈ B, (b, Cb) is
in S. Then (a,

⋃
b∈B Cb) ∈ R ∗ S if and only if there exists a B ⊆ Y such that (a,B) ∈ R and

(B,
⋃

b∈B Cb) ∈ S∗, which is the case if and only if (a,
⋃

b∈B Cb) ∈ RS∗.

The Peleg composition plays an important role in this article because the modal operators in
Peleg’s concurrent dynamic logic [Pel87] are based on it. In this context, it models the sequential
composition of multirelational programs. Its units are the multirelations ηX ; because of this, we
henceforth also write 1X for them.

Peleg composition is not associative – only (R ∗ S) ∗ T ⊆ R ∗ (S ∗ T ) holds [FS15] – so that
multirelations do not form a category under Peleg composition. Yet it becomes associative if the
third factor is univalent [FKST17]; see also [FGS23a] and Section 3 for other situations where
multirelations under Peleg composition form categories.

Example 2.2 ([FS15]). Associativity fails for the multirelations R = {(a, {a, b}), (a, {a}), (b, {a})}
and S = {(a, {a}), (a, {b})} on the set X = {a, b}:

(R ∗R) ∗ S = {(a, {a}), (a, {b}), (b, {a}), (b, {b})}
⊂ {(a, {a, b}), (a, {a}), (a, {b}), (b, {a}), (b, {b})}
= R ∗ (R ∗ S).

Peleg composition preserves arbitrary unions in its first argument and therefore has a right
adjoint [FGS23b]

R ∗ S = RS∗ ⊆ T ⇔ R ⊆ T/S∗ = T/S.

where residual notation has been overloaded. It is important for defining multirelational modal
box operators in Section 5.

Multirelational modal operators also require multirelational tests. These are subsets of 1X for
any X, and represent assertions in Peleg’s concurrent dynamic logic, formalised as multirelational
programs that observe a property of program states, but do not alter the state. Like relational
tests, they correspond to subsets of X. They are related to relational tests via the isomorphism
(−)1X from relational tests to multirelational ones and its inverse (−)1⌣X , which specialise the
isomorphisms Λ and α between relations in Rel and nondeterministic functions in Set (see Sec-
tion 3). The boolean complement of a multirelational test P is ¬P = 1− P , overloading notation
for the complement of relational tests.

The Peleg lifting of a multirelational test P ⊆ 1X is P∗ = {(A,A) | ∀a ∈ A. (a, {a}) ∈ P}, the
power test of the isomorphic relational test below IdX . This justifies overloading the power test
and the Peleg lifting notation.

Lemma 2.3 ([FKST17]). Let R : X 7→ PY and P ⊆ IdX . Then

dom(R∗) = dom(R)∗, (PR)∗ = P∗R∗, 1XP∗ = P1X .

Remark 2.4. To simplify notation, we often identify relational and multirelational tests with sets.
A power test for the relation or multirelation P is then just the powerset of the set P : P∗ = PP .
In particular we may assume that dom(R) = {a | ∃b. Ra,b} for all R : X 7→ PY . We write, for
instance, A ⊆ P instead of IdA ⊆ P and A ∩ P = ∅ instead of IdA ∩ P = ∅. We also write ¬ for
set complement.

We finish this section with a brief discussion of concepts related to the inner structure of
multirelations, which have been studied in detail in [FGS23b, Section 3], based on previous work
in [Rew03, FS15, FS16]. We henceforth speak of inner and outer concepts for a clear distinction.

For R,S : X 7→ PY , we define

5



� the inner union R ⋓ S = {(a,A ∪B) | Ra,A ∧ Sa,B} with unit 1⋓ = {(a, ∅) | a ∈ X},

� the inner complementation ∼R = RC = {(a,−A) | Ra,A},

� the set A⋓ = {(a, {b}) | a ∈ X ∧ b ∈ Y } of atoms in X 7→ PY ,

� the dual operation Rd = −∼R = −RC.

The inner union is associative and commutative, but not generally idempotent. In Peleg’s con-
current dynamic logic, it is related to the parallel composition of multirelational programs. These
concepts feature in laws for multirelational modal operators in Sections 5 and 6.

Inner deterministic multirelations model an inner or demonic choice of multirelations. The
multirelation R : X 7→ Y is

� inner total if R ⊆ −1⋓, that is, B is non-empty for each (a,B) ∈ R,

� inner univalent if R ⊆ A⋓ ∪ 1⋓, that is, B is either a singleton or empty for each (a,B) ∈ R,

� inner deterministic if it is inner total and inner univalent, in which case B ⊆ Y is a singleton
set whenever Ra,B for some a ∈ X.

We write ν(R) for the inner total part of R: those pairs in R whose second component is not ∅, that
is, ν(R) = R − 1⋓. Basic properties of inner total, univalent and deterministic multirelations are
studied again in [FGS23b, Section 3]. The structure of inner and outer univalent and deterministic
multirelations is the subject of [FGS23a].

Finally, we need the following closures on the inner structure. For R : X 7→ PY ,

� the up-closure R↑ = RΩ = {(a,A) | ∃(a,B) ∈ R. B ⊆ A},

� the down-closure R↓ = RΩ⌣ = {(a,A) | ∃(a,B) ∈ R. A ⊆ B}.

See [FGS23b, Section 4] for details. The up-closure and down-closure are related by inner duality
with respect to ∼.

3 Deterministic Multirelations

In this section, we summarise advanced properties of deterministic multirelations from [FGS23a,
FGS23b] that are important for reasoning with modal operators.

Recall that a quantaloid is a category in which every homset forms a complete lattice and
where arrow composition preserves arbitrary sups in both arguments.

The main result in [FGS23a] on inner and outer deterministic multirelations is as follows.

Proposition 3.1 ([FGS23a, Proposition 3.8]). The inner deterministic multirelations with ∗, 1,⋃
and the outer deterministic multirelations with ∗, 1 and⋓ form quantaloids isomorphic to the

quantaloid of binary relations with relational composition, the identity relation and set union.

For here, it is particularly important to note that Λ is the isomorphism from the quantaloid
Rel to that of outer deterministic multirelations, which sends relations X 7→ Y to the isomorphic
functions X → PY (modelled as outer deterministic multirelations X 7→ PY via their graphs),
relational composition to Peleg composition, the IdX to the 1X and unions to inner unions, which
are idempotent on outer deterministic multirelations [FGS23b, Lemma 3.6]. Its inverse is α, which
decomposes functions in X → PY (as outer deterministic multirelations X 7→ PY ) into relations
X 7→ Y .

Likewise, η = (−)1 is the isomorphism from Rel to the quantaloid of inner deterministic
multirelations and α is its inverse. The functor η simply wraps all elements in the codomain of a
relation into set braces, while α removes these braces. The following consequence of this fact is
important for concurrent dynamic logic, in particular Goldblatt’s axiomatisation in Section 6.
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Lemma 3.2 ([FGS23a, Lemmas 3.4 and 3.15]). Let R : X 7→ PY and S : Y 7→ PZ. Then
α(R ∗ S) ⊆ α(R)α(S), and equality holds if R and S are inner or outer deterministic.

The following counterexample shows that equality does not hold in general.

Example 3.3 ([FGS23a, Example 3.16]). For R = {(a, {a, b})},

α(R ∗R) = α(∅) = ∅ ⊂ {(a, a), (a, b)} = α(R) = α(R)α(R).

In [FGS23a, Section 3.3], we have also introduced determinisation maps for multirelations.
While α approximates multirelations X 7→ PY by relations X 7→ Y , these maps send them to
the isomorphic inner and outer nondeterministic multirelation instead. Let R : X 7→ PY be a
multirelation. The outer determinisation operation δo = Λ ◦ α sends R to the outer deterministic
multirelation isomorphic to the relation α(R). The inner determinisation operation δi = η ◦ α
sends R to the inner deterministic multirelation isomorphic to α(R). They satisfy

δo(R) = {(a,B) | B =
⋃

R(a)} and δi(R) = {(a, {b}) | b ∈
⋃

R(a)}.

Proposition 3.4 ([FGS23a, Corollary 3.10]). The maps δi and δo are isomorphisms between the
quantaloids of inner deterministic and outer deterministic multirelations.

By functoriality, δi(R∗S) = δi(R)∗δi(S) if R, S are outer deterministic, and δo(R∗S) = δo(R)∗
δo(S) if R, S are inner deterministic. Moreover, the inner and outer deterministic multirelations
are precisely the fixpoints of δi and δo, respectively [FGS23a, Corollary 3.11].

We end this section with a collection of standard properties of power allegories from [BdM97]
that are helpful in proofs in the remaining sections. They are also listed in [FGS23a, Lemmas 2.1
and 2.2].

Lemma 3.5. Let R : X 7→ Y , S : Y 7→ Z and let f, g : X 7→ Y be outer deterministic. Then

1. α(Λ(R)) = R and Λ(α(f)) = f ,

2. gΛ(S) = Λ(gS) and Λ(∋X) = IdPX ,

3. Λ(RS) = Λ(R)P(S),

4. Λ(f) = fη,

5. α(η) = Id.

4 Properties of Tests and Domain

The study of modal operators in a multirelational setting is based on properties of tests and
domain, which we consider in this section. Recall from Section 2 that we usually identify relational
and multirelational tests with sets instead of considering them as subsets of Id or 1 explicitly.
Further, Peleg compositions P ∗R and R ∗ P of multirelational tests P and multirelations R can
always be replaced by relational compositions α(P )R and RP∗, respectively, where α(P ) = P1⌣

is the isomorphic relational test and P∗ the isomorphic power test of P .

Lemma 4.1. Let R : X 7→ PY and P ⊆ Y . Then

1. RP∗ = R ∩ UP∗ and R¬(P∗) = R− UP∗,

2. (UP∗)↓ = UP∗,

3. ν(RP∗) = ν(R)P∗,

4. α(R)η(P ) = δi(R)P∗ = δi(ν(R↓)P∗).
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Proof. Item (1) is standard in relation algebra.
For (2), it suffices to show that P∗Ω⌣ ⊆ UP∗. This follows from P∗Ω⌣∋ ⊆ UP because

UP∗ = U(∈\PU ∩ Id) = (∈\PU)⌣ = UP/∋, and in fact from P∗∋ ⊆ UP as Ω⌣∋ = ∋. Indeed,
∈P∗ ⊆ ∈(∈\PU) = PU and the claim follows from properties of converse.

For (3), ν(RP∗) = (R ∩ UP∗) − 1⋓ = (R− 1⋓) ∩ UP∗ = ν(R)P∗ using (1).
For (4), α(R)P1 = α(R)1P∗ = δi(R)P∗ yields the first equation, using Lemma 2.3 and expand-

ing definitions. For the second equation, δi(R) = R↓ ∩ A⋓ by [FGS23a, Lemma 3.14]. It follows
that δi(R)P∗ = (R↓ ∩ UP∗)↓ ∩ A⋓ = δi(R↓P∗) = δi(ν(R↓P∗)) = δi(ν(R↓)P∗). The first step uses
(1), (2) and the fact that intersections of down-closed sets are down-closed, the second (1) and the
above characterisation of δi, the third δi ◦ ν = δi ([FGS23a, Lemma 4.1(2)]) and the last (3).

Tests P ⊆ IdX obviously form a boolean algebra with complementation ¬P = IdX −P . Tests
P∗ ⊆ IdPX thus form a boolean algebra with ¬(P∗) = IdPX − P∗.

Domain operations on algebras of multirelations have been studied in [FS15, FS16]. The
standard definition for relations in X 7→ Y in Section 2 applies to multirelations.

Recall that dom(R∗) = dom(R)∗ by Lemma 2.3; also note that dom(P ) = P = dom(η(P )) for
tests P . Another important property of domain is domain locality [FS15],

dom(RS∗) = dom(R dom(S)∗).

Further, dom(R ∩ S) = 1 ∩ SR⌣ [FŠ90], dom(PR∗) = P ∩ dom(R), and, set-theoretically,

dom(RP∗) = {a | ∃B. Ra,B ∧B ⊆ P} and dom(R∗) = {A | ∀a ∈ A. ∃B. Ra,B}.

Lemma 4.2. Let R : X 7→ PY and P ⊆ Y . Then

1. dom(δi(R)) = dom(α(R)) = dom(ν(R)) = dom(ν(δo(R))),

2. dom(α(R)P ) = dom(ν(R↓)P∗) and dom(α(R)¬P ) = dom(R¬(P∗)).

Proof. For (1), first dom(δi(R)) = dom(α(R)1) = dom(α(R)dom(1)) = dom(α(R)). Second,
dom(α(R)) = Id ∩R∋U = Id ∩R(−1⋓)⌣ = dom(R− 1⋓) = dom(ν(R)) because U∈ = −1⋓ holds
by a simple set-theoretic calculation. Third, dom(ν(δo(R))) = dom(δi(δo(R))) = dom(δi(R))
using the previous identities and δi ◦ δo = δi [FGS23a, Lemma 3.17].

For (2), the first equality follows from (1) and Lemma 4.1(3) and (4) using that ν◦ν = ν [FS16].
For the second, ¬dom(∋¬P ) = Id − (∋¬PU) = Id − (∋−PU) = Id ∩ (∈\PU) = P∗, and therefore
dom(α(R)¬P ) = dom(R dom(∋¬P )) = dom(R¬(P∗)).

From domain properties we immediately obtain dom(δi(R)) = dom(R dom(∋1)) ⊆ dom(R)
and dom(α(R)) = dom(R dom(∋)) ⊆ dom(R). Intuitively, dom(δi(R)) = dom(α(R)) follows
immediately from the isomorphism between relations and inner deterministic multirelations. Yet
one needs to remove the elements that are mapped to ∅ by (the function isomorphic to) δo(R)
using ν to make the resulting domain equal to that of α(R) and δi(R). This explains the identities
in Lemma 4.2(1).

The identities in Lemma 4.2(2) are less intuitive, but needed for deriving properties of mul-
tirelational modal operators below.

5 Modal Operators

We now turn to modal box and diamond operators for multirelations, but first recall the standard
relational modalities, generalising the underlying Kripke frames of type X 7→ X to X 7→ Y and
the operators from PX → PX to PX → PY or PY → PX.
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5.1 Relational modal operators

The backward relational diamond operator ⟨−| : (X 7→ Y ) → (PX → PY ) can be obtained
directly from the relational image operation: ⟨R|P = cod(PR) = dom((PR)⌣) for all R : X 7→ Y
and P ⊆ X. Its opposite forward relational diamond operator |−⟩ : (X 7→ Y ) → (PY → PX)
is given as |R⟩ = ⟨R⌣| so that |R⟩Q = dom(RQ) for all R : X 7→ Y and Q ⊆ Y . Forward and
backward box operators |−] : (X 7→ Y ) → (PY → PX) and [−| : (X 7→ Y ) → (PY → PX) can
be obtained from |−⟩ and ⟨−| by De Morgan duality: |R] = ¬◦ |R⟩ ◦¬ and [R| = ¬◦⟨R| ◦¬. They
are again related by opposition |R] = [R⌣|.

Using nondeterministic functions – arrows of the Kleisli category SetP of the powerset monad
in Set – instead, ⟨−| = (−)K , the Kleisli extension of such arrows. The left triangle in the diagram
below thus commutes, where F : Rel → SetP and R : SetP → Rel indicate the isomorphism
between the two categories.

PX → PY PX 7→ PY

X 7→ Y

X → PY X 7→ PY

G

⟨−| P

F

Λ

G

(−)K
R

(−)P

α

The graph functor G : Set → Rel translates this diagram to Rel. The relational image
operator P and the Kleisli lifting (−)P in Rel now play the role of ⟨−| and (−)K in Set. The
Kleisli extension (−)K is actually an isomorphism between SetP and the category of backward
diamond operators (with inverse given by postcomposition with the unit of the powerset monad). It
preserves the entire quantaloid structure in SetP that comes from Rel. The standard definition of
the Kleisli lifting translates to multirelations as (−)P = P(−)µ [FGS23a, Lemma 2.4]. Therefore,
and of course owing to the composition of isomorphisms along the other outer faces of our diagram,
we obtain a corresponding isomorphism between categories of outer deterministic multirelations
and their Kleisli liftings on the right of this diagram. All arrows in the diagram are therefore
isomorphisms between categories.

In the following, we focus on the forward operators |−⟩ and |−] and use the more conventional
diamond notation ⟨−⟩r and [−]r with indices indicating their relational nature. Hence, for R :
X 7→ Y and Q ⊆ Y ,

⟨R⟩rQ = dom(RQ) = {a | ∃b ∈ Y. Ra,b ∧ b ∈ Q},
[R]rQ = ¬dom(R¬Q) = {a | ∀b ∈ Y. Ra,b ⇒ b ∈ Q}.

For backward box and diamond operators we simply write ⟨R⌣⟩r and [R⌣]r. It follows that
⟨R⌣⟩rP = {b | ∃a ∈ X. Ra,b ∧ a ∈ P} and [R⌣]rP = {b | ∀a ∈ X. Ra,b ⇒ a ∈ P}. This describes
once again the left of the above diagram.

On the right of the diagram above it is routine to check that the graphs of ⟨R⟩rQ and [R]rP
are given by

P(R⌣) = {(Q,P ) | P = ⟨R⟩rQ} and Λ(∋/R) = {(Q,P ) | P = [R]rQ}.

We henceforth write
⟨R⟩Gr = P(R⌣) and [R]Gr = Λ(∋/R),

where the superscript G indicates that these operators are graphs of ⟨R⟩r and [R]r. The fact that
[R]Gr is an allegorical box operator in Rel is known [BdM97].

5.2 Multirelational modal operators

Two extensions of relational modalities to multirelations have been proposed. The first replaces
relational composition by Peleg composition in relational image operations and their De Morgan
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duals. It has been advocated by Peleg in his concurrent dynamic logic [Pel87] and studied further
in [FS15, FS16]. The second has been proposed implicitly by Nerode and Wijesekera [NW90] and
studied further by Goldblatt [Gol92]. Here we show that, in the language of power allegories,
it uses α to approximate multirelations by relations in relational boxes and diamonds. In the
remainder of this section we formalise and relate these two approaches. We also study the second
approach in Rel.

First we recall the multirelational modal operators ⟨−⟩∗, [−]∗ : (X 7→ PY ) → (PY → PX)
used by Peleg in concurrent dynamic logic. In our semantic setting, they can be defined, for all
R : X 7→ PY and P ⊆ Y , as

⟨R⟩∗P = dom(R ∗ P ) and [R]∗P = ¬dom(R ∗ ¬P ).

As already mentioned, these are essentially relational modalities with relational composition re-
placed by Peleg composition. Indeed, ⟨R⟩∗P = ⟨R⟩rP∗ and [R]∗P = [R]r¬((¬P )∗), where the
double negation in the last identity cannot be eliminated. Further, ⟨R⟩∗P = ¬[R]∗¬P and
[R]∗P = ¬⟨R⟩∗¬P , and, unfolding definitions,

⟨R⟩∗P = {a | ∃B. Ra,B ∧B ⊆ P} and [R]∗P = {a | ∀B. Ra,B ⇒ B ∩ P ̸= ∅}.

As pointed out in the introduction, Nerode and Wijesekera have argued that the semantics of
[−]∗, as expanded above, is quite different from that of its relational counterpart, and that it fails
to capture standard program correctness specifications that are usually associated with modal
boxes. They have therefore proposed an alternative multirelational box, to which we add a De
Morgan dual diamond operator ⟨−⟩α : (X 7→ PY ) → (PY → PX). In the language of power
allegories and for R : X 7→ PY and P ⊆ Y , the two operators are

[R]α = [α(R)]r and ⟨R⟩α = ⟨α(R)⟩r.

Unfolding definitions yields

[R]αP = {a | ∀B. Ra,B ⇒ B ⊆ P} and ⟨R⟩αP = {a | ∃B. Ra,B ∧B ∩ P ̸= ∅},

which confirms in particular that [R]αP is consistent with Nerode and Wijesekera’s definition.
These operations are also related by De Morgan duality: ⟨R⟩αP = ⟨α(R)⟩rP = ¬[α(R)]r¬P =

¬[R]α¬P and likewise [R]αP = ¬⟨R⟩α¬P .
Further, [R]αP = ¬⟨R⟩r¬(P∗) = [R]rP∗ by Lemma 4.2(2), and then ⟨R⟩αP = ⟨R⟩r¬((¬P )∗)

by De Morgan duality. Once again, the double negation in the last identity cannot be eliminated.

5.3 Properties of multirelational modal operators

In this section we present alternative algebraic definitions of Nerode and Wijesekera’s box operator;
the richness of the multirelational language offers many possibilities. We also present some simple
relationships between the different kinds of modalities.

Lemma 4.1(1) leads directly to a different, purely multirelational definition of [−]α.

Lemma 5.1. Let R : X 7→ PY and P ⊆ Y . Then [R]αP = ¬dom(R− UP∗).

Further, [−]α and ⟨−⟩α can be defined in various ways in terms of other modalities.

Lemma 5.2. Let R : X 7→ PY and P ⊆ Y . Then

1. [R]α = [ν(R↓)]∗ = [δi(R)]∗ = [δo(R)]α = [δi(R)]α = ⟨δo(R)⟩∗,

2. ⟨R⟩α = ⟨ν(R↓)⟩∗ = ⟨δi(R)⟩∗ = ⟨δo(R)⟩α = ⟨δi(R)⟩α = [δo(R)]∗.

Proof. For (1), first [R]αP = [α(R)]rP = ¬dom(ν(R↓)(¬P )∗) = [ν(R↓)]∗P using Lemma 4.2(2).
Second, [R]αP = ¬dom(α(R)¬P ) = ¬dom(δi(R)(¬P )∗) = [δi(R)]r¬((¬P )∗) = [δi(R)]∗P using
Lemma 4.1(4). The proofs of the third and fourth identity are trivial. Finally,

[δo(R)]αP = [δo(R)]rP∗ = ⟨δo(R)⟩rP∗ = ⟨δo(R)⟩∗P

10



because δo(R) is outer deterministic, so the coincidence of relational boxes and diamonds is stan-
dard. The proofs for (2) follow from (1) by De Morgan dualities.

Lemma 5.2 implies the following fact.

Corollary 5.3. Let R : X 7→ PY and P ⊆ Y . Then ⟨ν(R)⟩∗P ⊆ ⟨R⟩αP and [R]αP ⊆ [ν(R)]∗P .

Its proof is immediate from the standard fact that relational diamonds preserve ⊆ in both
arguments, while relational boxes reverse this order in their first argument (and preserve it in
their second one), and relational representations of multirelational modal operators.

Lemma 5.2 also indicates situations where multirelational modalities coincide.

Corollary 5.4. Let R : X 7→ PY . Then

1. [R]α = [R]∗ and ⟨R⟩α = ⟨R⟩∗ if R is inner deterministic,

2. [R]α = ⟨R⟩∗ and [R]∗ = ⟨R⟩α if R is outer deterministic.

The proofs use properties of Lemma 5.2 together with fixpoint properties of inner and outer
deterministic multirelations and properties of δo and δi from [FGS23a, FGS23b].

Remark 5.5. The multirelational boxes and diamonds specialise to relational ones. Let R : X 7→
Y . Then [η(R)]α = [α(η(R))]r = [R]r and ⟨η(R)⟩α = ⟨α(η(R))⟩r = ⟨R⟩r is a trivial consequence
of the fact that η and α form a bijective pair. Further, ⟨η(R)⟩∗P = dom(R1P∗) = dom(RP1) =
dom(RP ) = ⟨R⟩rP using Lemma 2.3. The identity [η(R)]∗ = [R]r then follows by duality.

Here is another definition of [−]α.

Lemma 5.6. Let R : X 7→ PY and P ⊆ Y . Then [R]αP = ¬dom(δo(R)¬(P∗)).

Proof. [R]αP = [δo(R)]αP = [δo(R)]rP∗ = ¬dom(δo(R)¬(P∗)) using Lemma 5.2.

Our final definition of [−]α requires a technical lemma.

Lemma 5.7. Let R : X 7→ PY , P ⊆ X and Q ⊆ Y . Then P ⊆ [R]αQ ⇔ PR ⊆ RQ∗.

Proof. Using P and Q as relational or multirelational tests depending on the context,

P ⊆ [R]αQ ⇔ P ⊆ ¬dom(R¬(Q∗)) ⇔ Pdom(R¬(Q∗)) ⊆ ∅ ⇔ PR¬(Q∗) ⊆ ∅ ⇔ PR ⊆ RQ∗.

The penultimate step uses a standard property of dom of relations.

Lemma 5.8. Let R : X 7→ PY and P ⊆ Y . Then [R]αP = (UP∗)/R ∩ 1 = (RP∗)/R ∩ 1.

Proof. For the first identity we use Lemmas 4.1 and 5.7 and the Galois connection for residuation:

Q ⊆ [R]αP ⇔ QR ⊆ RP∗

⇔ QR ⊆ R ∩ UP∗

⇔ QR ⊆ UP∗

⇔ Q ⊆ (UP∗)/R

⇔ Q ⊆ (UP∗)/R ∩ 1.

Thus [R]αP = (UP∗)/R ∩ 1. The proof of the second identity is similar.

The preceding definitions of [−]α are useful for establishing further properties. Identities such
as [δi(R)]α = [δo(R)]α are instances of a more general result. To this end we consider sufficient
conditions for a function f to satisfy [R]α = [f(R)]α or [R]r = [f(R)]α:

1. Note that [R]α = [α(R)]r = [α(f(R))]r = [f(R)]α if α◦f = α. The latter holds, for example,
for f = ↓ or f = ν because α(R↓) = α(R) [FGS23a, Lemma 3.15(3)] and α◦ν = α [FGS23a,
Lemma 4.1(1)].
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2. If [R]α = g(f(R)) for an arbitrary function g describing the context, then

[R]α = g(f(R)) = g(f(f(R))) = [f(R)]α

if f is idempotent. This situation arises, for example, for g = [−]∗ and f = δi or f = ν(−↓),
and for g = [ν(−)]∗ and f = ↓ by [FGS23a, Lemma 3.17] and Lemma 5.2. Another instance
has f = δo according to Lemma 5.6.

3. If [R]α = [g(R)]α has already been established (for example, by the above instances) and
g ◦ f = g, then [R]α = [g(R)]α = [g(f(R))]α = [f(R)]α generalising the first pattern.
Combinations of δi, δo and ν that give rise to instances can be found in [FGS23a, Lemmas
3.17 and 4.1].

4. If [R]α = [g(R)]r has already been established and f is a right-inverse of g, then

[R]r = [g(f(R))]r = [f(R)]α.

For example, Λ is a right-inverse of α, hence [R]r = [Λ(R)]α for any relation R.

Remark 5.9. The above instances imply that [R]α = [δo(R)]α = [δi(R)]α = [R↓]α = [ν(R)]α
and further equalities. All of the arguments R, δo(R), δi(R), R↓ and ν(R) contain essentially
the same information (as regards box) just arranged differently. Yet the different arguments have
different properties, so switching between them can be useful. For example, δo(−)↓ and ↓ are
closure operators with respect to ⊆; ν is an interior operator with respect to ⊆; other options give
closure/interior operators or extrema with respect to certain (pre)orders.

5.4 Multirelational modal operators as relations

We now return to the right-hand triangle in the diagram from the beginning of this section and
study the relational and multirelational modal operators in Rel instead of Set, hence entirely in
our multirelational language.

First we consider graphs of the relational modal operators [−]r and ⟨−⟩r. As already men-
tioned, they are given by [−]Gr = Λ(∋/(−)) and ⟨−⟩Gr = P((−)⌣). More concretely, rewriting the
definitions at the beginning of this section shows that, for R : X 7→ Y , P ⊆ X and Q ⊆ Y ,

⟨R⟩Gr = {(Q,P ) | P = ⟨R⟩rQ} and [R]Gr = {(Q,P ) | P = [R]rQ}.

Backward modalities ⟨R⌣⟩ and [R⌣] correspond in an analogous way to P(R) and Λ(∋/R⌣). The
extension to the multirelational modalities ⟨−⟩Gα and [−]Gα is then straightforward by inserting α’s:
for R : X 7→ PY , P ⊆ X and Q ⊆ Y , ⟨R⟩Gα = ⟨α(R)⟩Gr and [R]Gα = [α(R)]Gr , and therefore

⟨R⟩Gα = {(Q,P ) | P = ⟨R⟩αQ} and [R]Gα = {(Q,P ) | P = [R]αQ}.

This explains in particular the role of the Kleisli lifting (−)P = P ◦ α as a backward diamond
operator (X 7→ PY ) → (PX 7→ PY ) relative to its standard counterpart (−)K : (X → PY ) →
(PX → PY ) in our diagram more formally.

For any relation X 7→ Y or multirelation X 7→ PY we can use these correspondences for
translating properties from the maps PX → PY to their graphs PX 7→ PY , at least in tabular
allegories.

Alternatively we can also reason about the latter in point-free style in the extended language
of power allegories used in previous sections. This uses the subset relation Ω and the complement
relation C from relation algebra, introduced at the end of Section 2.1, rather strongly. We need in
particular standard properties from relation algebra such as −∈C = ∈ and ∈C = −∈, C = C⌣,
C2 = Id and in particular that R(−S) = −(RS) if and only if relation R is outer deterministic.
We also recall a lemma from [FGS23a], to which we add a third property.

Lemma 5.10. Let R : X 7→ Y . Then
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1. Λ(R)C = Λ(−R),

2. Λ(R)Ω = R⌣\∈ = (∋/R)⌣,

3. ∋/R = (R∈)
d⌣

.

Proof. Items (1) and (2) are proved in [FGS23a, Lemma 2.3]. For (3), (R∈)
d⌣

= −(C(R∈)⌣) =

−(−∋R⌣) = ∋/R, using the definition of the dual operator from (−)
d
, introduced in Section 2.2,

in the first step.

Using the dual operator allows us to rewrite the definition of the relational box operator without
using residuation.

Corollary 5.11. Let R : X 7→ Y . Then [R]Gr = Λ((R∈)
d⌣

) and ⟨R⟩Gr = Λ((R∈)⌣).

The second identity is trivial, but it shows the correspondence with the first.
Next we derive the standard relationships between boxes and diamonds to indicate how such

properties can be expressed in Rel. In (1) below we prove the De Morgan duality between boxes
and diamonds. In (2) and (3) we translate the standard conjugations and Galois connections for
relational boxes and diamonds to Rel:

⟨R⟩rP ⊆ ¬Q ⇔ ⟨R⌣⟩rQ ⊆ ¬P and ⟨R⌣⟩rP ⊆ Q ⇔ P ⊆ [R]rQ.

Proposition 5.12. Let R : X 7→ Y . Then

1. C⟨R⟩GrC = [R]Gr and ⟨R⟩Gr = C[R]GrC,

2. C(⟨R⟩Gr Ω)⌣ = ⟨R⌣⟩GrCΩ⌣,

3. [R]Gr Ω⌣ = (⟨R⌣⟩Gr Ω)⌣.

Proof. For (1), CP(R⌣)C = Λ(−∋)P(R⌣)C = Λ(−∋R⌣)C = Λ(−(−∋R⌣)) = Λ(∋/R). The first
step unfolds C, the second uses Lemma 3.5(3), the third Lemma 5.10(1) and the fourth a standard
property of residuals. The second identity in (1) then follows from C2 = Id .

For (2),

P(R)CΩ⌣ = Λ(−(∋R))(−(−∋∈))

= −(Λ(−(∋R))(−∋)∈)

= −(Λ(−(∋R))C∋∈)

= −(Λ(∋R)∋∈)

= −(∋R∈)

= −(C(−∋)(∋R⌣)⌣)

= C(∋/(∋R⌣))

= C(P(R⌣)Ω)⌣

The first step rewrites P and Ω⌣, and applies Lemma 5.10(1). The second uses outer deter-
minism of Λ(−(∋R)). The third step uses standard properties of C and the fourth uses again
Lemma 5.10(1). The fifth step uses Lemma 3.5(1) and the sixth uses again standard properties
of C. The seventh uses outer determinism of C and standard properties of residuation. The final
step uses Lemma 5.10(2) and properties of residuation.

Finally, (3) is immediate from (1) and (2) using C2 = Id .

As expected, the relation C plays the role of ¬ in Rel and Ω that of ⊆. The results in
Proposition 5.12 translate to ⟨−⟩Gα and [−]Gα by instantiation with α(R).

Next we show that the multirelational box [−]Gα can be expressed using the superset relation
Ω⌣ and without residuation.
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Lemma 5.13. Let R : X 7→ PY . Then [R]Gα = Λ(Ω⌣/R) = Λ((R∋∈)d⌣) and ⟨R⟩Gα = Λ((R∋∈)⌣).

Proof. For the first identity, Ω⌣/R = (∋/∋)/R = ∋/R∋ = ∋/α(R), where the second step uses
a standard “currying” property of residuals. The remaining identities are immediate from Corol-
lary 5.11.

Peleg’s modal operators ⟨−⟩∗ and [−]∗ can of course be translated to Rel and expressed as
graphs as well. For R : X 7→ PY it is routine to check that

Λ(R↑⌣) = {(Q,P ) | P = ⟨R⟩∗Q} and Λ(R↑d⌣) = {(Q,P ) | P = [R]∗Q}.

Hence Λ(R↑⌣) is the analogue of ⟨R⟩∗ induced by the graph functor, and Λ(R↑d⌣) the analogue
of [R]∗. We can therefore write

⟨R⟩G∗ = Λ(R↑⌣) and [R]G∗ = Λ(R↑d⌣).

Once again we obtain the De Morgan dualities expected, using C instead of ¬.

Proposition 5.14. Let R : X 7→ PY . Then ⟨R⟩G∗ = C[R]G∗C and [R]G∗ = C⟨R⟩G∗C.

Proof. CΛ(R↑⌣)C = Λ(−(CR↑⌣)) = Λ(R↑d⌣), using Lemmas 3.5(2) and 5.10(1) in the first step

and the definition of (−)
d

in the second. The other identity follows using C2 = Id .

Yet we do not derive Galois connections or conjugations for Peleg’s box operators as they do
not interact nicely with relational converse.

As a final exercise, we show how the interactions between the different modal operators, which
we considered in Lemma 5.2 and Remark 5.5 for Set, can be derived in Rel. First, ⟨−⟩Gα, ⟨−⟩G∗ ,
[−]Gα and [−]G∗ specialise once again to relational ⟨−⟩Gr and [−]Gr , by analogy to Remark 5.5. This
can be proved in our multirelational language, as the following lemma shows. Likewise we show
how (some of) the properties from Lemma 5.2 can be derived in this language.

Lemma 5.15. Let R : X 7→ PY and S : X 7→ Y . Then

1. ⟨S⟩Gr = ⟨Λ(S)⟩Gα = ⟨η(S)⟩Gα and [S]Gr = [Λ(S)]Gα = [η(S)]Gα,

2. ⟨R⟩Gα = ⟨δo(R)⟩Gα = ⟨δi(R)⟩Gα and [R]Gα = [δo(R)]Gα = [δi(R)]Gα,

3. ⟨S⟩Gr = ⟨S∈⟩G∗ = ⟨η(S)⟩G∗ and [S]Gr = [S∈]G∗ = [η(S)]G∗ ,

4. ⟨R⟩Gα = ⟨R∋∈⟩G∗ = ⟨δi(R)⟩G∗ and [R]Gα = [R∋∈]G∗ = [δi(R)]G∗ ,

5. ⟨S⟩Gr = [Λ(S)]G∗ and [S]Gr = ⟨Λ(S)⟩G∗ .

6. ⟨R⟩Gα = [δo(R)]G∗ and [R]Gα = ⟨δo(R)⟩G∗ .
Proof. For (1), ⟨Λ(S)⟩Gα = ⟨α(Λ(S))⟩Gr = ⟨S⟩Gr . The proofs for η and the box operators are similar.

For (3), Λ((S∈)↑⌣) = Λ((S∈Ω)⌣) = Λ((S∈)⌣) = P(S⌣) using ∈Ω = ∈. A proof of the second
identity uses η(S)↑ = S1Ω = S∈ and is similar; and so are the remaining proofs.

For (5), Λ(Λ(S)↑⌣) = Λ((Λ(S)Ω)⌣) = Λ(∋/S) using Lemma 5.10(2) shows the second identity;
the first follows by duality.

Items (2), (4) and (6) follow by instantiating (1), (3) and (5) with S = α(R).

The following commutative diagram summarises the relationships between the various modal
operators shown in the previous results.

PY 7→ PX PY 7→ PX

X 7→ PY X 7→ PY X 7→ PY

X 7→ Y

[ ]G∗
⟨⟩Gα

⟨⟩G∗[ ]Gα

δo

⟨⟩Gα [ ]Gα

δi

α

⟨⟩Gα
⟨⟩G∗

[ ]Gα

[ ]G∗

⟨⟩Gr Λ η [ ]Gr
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6 Goldblatt’s Axioms for Concurrent Dynamic Logic

The box and diamond axioms of Peleg’s concurrent dynamic logic have already been derived in
the multirelational semantics [FS15]. In particular, the Kleene star R∗ of R : X 7→ PX has
been defined as the least fixpoint of λS. 1 ∪ R ∗ S and studied in this setting. It exists because
this function preserves the order ⊆ of the complete lattice X 7→ PX. While the general algebra
of multirelations does not satisfy the usual star axioms of Kleene algebra (owing for instance to
the absence of associativity of Peleg composition), the modal star axioms of concurrent dynamic
algebra can nevertheless be derived. Relative to these results it remains to derive Goldblatt’s box
axioms, which consider [−]α in combination with ⟨−⟩∗, and disregard [−]∗. To simplify notation,
we write ⟨−⟩ for ⟨−⟩∗ and [−] for [−]α in the following.

In algebraic form, Goldblatt’s axioms [Gol92] for concurrent dynamic logic are

[R](P → Q) ⊆ ([R]P → [R]Q), (G1)

[R]1 = 1, (G2)

[R ∗ S]P = [R][S]P, (G3)

[R ∪ S]P = [R]P ∩ [S]P, (G4)

[R ⋓ S]P = (⟨R⟩1 → [S]P ) ∩ (⟨S⟩1 → [R]P ), (G5)

[R∗]P ⊆ P ∩ [R][R∗]P, (G6)

[R∗](P → [R]P ) ⊆ (P → [R∗]P ), (G7)

[P ]Q = P → Q, (G8)

[R](P → Q) ⊆ ⟨R⟩P → ⟨R⟩Q, (G9)

⟨R ∗ S⟩P = ⟨R⟩⟨S⟩P, (G10)

⟨R ∪ S⟩P = ⟨R⟩P ∪ ⟨S⟩P, (G11)

⟨R ⋓ S⟩P = ⟨R⟩P ∩ ⟨S⟩P, (G12)

P ∪ ⟨R⟩⟨R∗⟩P = ⟨R∗⟩P, (G13)

[R∗](⟨R⟩P → P ) ⊆ (⟨R∗⟩P → P ), (G14)

⟨P ⟩Q = P ∩Q, (G15)

[R]∅ ∪ ⟨R⟩1 = 1, (G16)

where P , Q are tests and P → Q stands for ¬P ∪Q.

Theorem 6.1. All axioms except (G3) hold in the multirelational semantics.

Proof. Axioms (G10)-(G13) and (G15) belong to Peleg’s concurrent dynamic logic. Algebraic
variants have been derived [FS15]. The remaining axioms, except (G3), have been validated with
the Isabelle/HOL proof assistant.

As a counterexample to (G3), consider the multirelation R = {(a, {a, b})} on {a, b} from
Example 3.3 with [R ∗R]∅. Then α(R ∗R) = ∅ ⊂ {(a, a), (a, b)} = α(R)α(R) and therefore

[R][R]∅ = [α(R)α(R)]∅ = {(b, b)} ⊂ {(a, a), (b, b)} = [∅]∅ = [R ∗R]∅.

Goldblatt’s original axioms are therefore unsound with respect to the intended multirelational
semantics used by Peleg, Nerode and Wijesekera as well as by Goldblatt himself and in this article.
The failure of (G3) may seem surprising: after all, (R∗S)∗P = R∗(S∗P ) holds for all composable
multirelations R and S and multirelational tests P [FS15]. Yet the proof of Theorem 6.1 shows
that the weak preservation of Peleg composition by α, namely

α(R ∗ S) ⊆ α(R)α(S),

in Lemma 3.2 together with Example 3.3 blocks any proof of (G3). In light of Lemma 3.2, at least
a weak version of (G3) can be derived.
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Proposition 6.2. Let R : X 7→ PY , S : Y 7→ PZ and P ⊆ Z. Then [R][S]P ⊆ [R ∗ S]P .

Proof. [R]α[S]αP = [α(R)]r[α(S)]rP = [α(R)α(S)]rP ⊆ [α(R ∗ S)]rP = [R ∗ S]αP , because boxes
are order-reversing in their first arguments.

Equality holds only in special cases such as [R↓ ∗ S]P = [R][S]P or if S is outer total. The
inclusion from Proposition 6.2 should therefore replace (G3) in Goldblatt’s axioms.

Goldblatt proves that his extension of propositional dynamic logic, which is a variant of Peleg’s
concurrent dynamic logic [Pel87] with the Nerode-Wijesekera box operator, is finitely axiomatis-
able and has the finite model property, which implies decidability. Whether these results still hold
for the sound axiomatisation using the formula in Proposition 6.2 remains to be seen.

Remark 6.3. The above counterexample also shows that [−]α, and consequently ⟨−⟩α, do not
generally yield actions of multirelations on powersets with respect to ∗, which is atypical for
(multi)modal operators; see for instance the axioms of propositional dynamic logic. For relational
modalities,

[RS]r = [R]r ◦ [S]r and ⟨RS⟩r = ⟨R⟩r ◦ ⟨S⟩r;

in fact, [−]r and ⟨−⟩r are functors Rel → Set.
Similarly, for Peleg’s multirelational modalities,

⟨R ∗ S⟩∗ = ⟨R⟩∗ ◦ ⟨S⟩∗ and [R ∗ S]∗ = [R]∗ ◦ [S]∗,

so that [−]∗ and ⟨−⟩∗ are composition-preserving maps from the algebra of multirelations (which
is not a category) into Set.

For ⟨−⟩α and [−]α, by contrast, these relationships fail due to the approximative nature of α,
as shown in Theorem 6.1 and Proposition 6.2.

At least in the outer and inner deterministic case, we get similar results, owing to the isomor-
phisms with Rel. In the outer deterministic case, for R : X 7→ Y and S : Y 7→ Z,

[Λ(R) ∗ Λ(S)]α = [Λ(R)]α ◦ [Λ(S)]α, ⟨Λ(R) ∗ Λ(S)⟩α = ⟨Λ(R)⟩α ◦ ⟨Λ(S)⟩α,
[Λ(Id)]α = Id = ⟨Λ(Id)⟩α.

Likewise, in the inner deterministic case,

[η(R) ∗ η(S)]α = [η(R)]α ◦ [η(S)]α, ⟨η(R) ∗ η(S)⟩α = ⟨η(R)⟩α ◦ ⟨η(S)⟩α,
[η(Id)]α = Id = ⟨η(Id)⟩α.

7 Propositional Hoare Logic for Multirelational Programs

The laws of propositional Hoare logic – disregarding assignment laws – can be derived in standard
propositional dynamic logic. A propositional Hoare logic for multirelational programs with Peleg
composition as sequential composition and inner union as parallel composition, has been proved
sound with respect to a multirelational semantics in [Str18]. The multirelational semantics of
conditionals and while loops has been encoded, for any test P : X 7→ X and multirelation R :
X 7→ X, as

if P then R else S = P ∗R ∪ ¬P ∗ S and while P do R = (P ∗R)∗ ∗ ¬P.

Yet the validity of Hoare triples has not been encoded using box operators, as it seems unlikely,
in light of Nerode and Wijesekera’s argument, that Peleg’s boxes capture the intended semantics.

In this section we base the validity of Hoare triples on Nerode and Wijesekera’s box,

⊢ {P}R{Q} ⇔ P ⊆ [R]αQ,

for precondition P : X 7→ X, multirelational program R : X 7→ X and postcondition Q : X 7→ X.
We prove soundness of the standard rules of propositional Hoare logic, plus a new rule for parallel
composition, with respect to the multirelational semantics.
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Proposition 7.1. The following rules of a propositional Hoare logic for multirelational programs
are derivable in the multirelational semantics:

P ⊆ [1]αP,

P ′ ⊆ P ∧ P ⊆ [R]αQ ∧Q ⊆ Q′ ⇒ P ′ ⊆ [R]αQ
′,

P ⊆ [R]αP
′ ∧ P ′ ⊆ [S]αQ ⇒ P ⊆ [R ∗ S]αQ,

P ∩Q ⊆ [R]αQ
′ ∧ ¬P ∩Q ⊆ [S]αQ

′ ⇒ Q ⊆ [if P then R else S]αQ
′,

P ∩Q ⊆ [R]αQ ⇒ Q ⊆ [while P do R]α(Q− P ),

P ⊆ [R]αQ ∧ P ⊆ [S]αQ ⇒ P ⊆ [R ⋓ S]αQ.

Proof. The skip and consequence rules for multirelations are immediate from their relational coun-
terparts, using [−]α = [α(−)]r.

For the sequential-composition rule, the hypotheses for this rule, standard laws for relational
boxes and the repaired axiom (G3), [R]α[S]αP ⊆ [R ∗ S]αP , from Proposition 6.2 imply that

P ⊆ [α(R)]rP
′ ⊆ [α(R)]r[α(S)]rQ = [R]α[S]αQ ⊆ [R ∗ S]αQ.

For the conditional rule, Q ⊆ [P ]α(P ∩Q) holds by boolean algebra and (G8). The hypotheses
for this rule and the sequential-composition rule then yield Q ⊆ [P ∗R]αQ

′ and Q ⊆ [¬P ∗ S]αQ
′,

and Q ⊆ [P ∗R ∪ ¬P ∗ S]αQ
′ follows from (G4).

For the while rule, first note that P ⊆ [R]αP ⇒ P ⊆ [R∗]αP for arbitrary R, P : the antecedent
is equivalent to 1 = P → [R]αP and 1 = [R∗]α1 = [R∗]α(P → [R]αP ) = P → [R∗]αP , using (G2)
and (G7), implies the consequent. Further, as for conditionals, Q ⊆ [P ∗R]αQ follows from the
hypothesis of the while rule and the sequential-composition rule; so we get Q ⊆ [(P ∗R)∗]αQ from
this implication. Using sequential composition, we combine this inequality with Q ⊆ [¬P ]α(Q−P ),
an immediate consequence of (G8), into Q ⊆ [(P ∗R)∗ ∗ ¬P ]α(Q− P ).

Lastly, for the parallel-composition rule, P ⊆ (⟨R⟩∗1 → [S]αQ)∩(⟨S⟩∗1 → [R]αQ) = [R ⋓ S]αQ
follows from the hypotheses of this rule using (G5) and some boolean algebra.

In addition to this proof we have also derived the rules in Proposition 7.1 using Isabelle. In
conclusion, despite its weaknesses discussed in Section 6, Nerode and Wijesekera’s box operator
seems nevertheless useful for program correctness and verification.

8 Conclusion

In this trilogy of articles we have studied the inner structure of multirelations and the categories of
outer and inner deterministic and univalent multirelations. Here, in the final part of this trilogy,
we have used this development to formalise Nerode and Wijesekera’s alternative box operator
for concurrent dynamic logic in an extension of power allegories, added a new De Morgan dual
diamond and related these two operators with Peleg’s modalities for multirelations and with
relational modalities in Set and Rel, answering a question from [FS15]. As applications, we have
derived an algebraic variant of Goldblatt’s axioms for concurrent dynamic logic and shown that
Nerode and Wijesekera’s box does not yield an action on sets, which is atypical for (multi)modal
operators. We have also shown how this operator can be used as the basis of a Hoare logic for
multirelational programs, which may be useful in program verification.

While we use a multirelational language of concrete relations and multirelations in this work,
an axiomatic extension of the abstract allegorical approach, which equips boolean power allegories
with multirelational operations, is its most natural continuation. The characterisation of intuition-
istic modal algebras based on locally complete allegories is another interesting question. Beyond
the forward modal operators considered so far, backward modalities could be defined using our
structural approach, and their application in the semantics and verification of programs or specifi-
cations with alternating nondeterminism should be explored. The use of concurrent dynamic logic
in (multirelational) program analysis is an interesting perspective for applications. Our derivation
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of a propositional Hoare logic for multirelational programs provides new evidence in this regard.
A general approach for transforming algebraic formalisms like the one in this article into program
verification components with proof assistants, including models of the program store and for vari-
able assignments, has been described in [AGS16]. The inner preorders for multirelations defined
in [FGS23b] seem related to the testing preorders for probabilistic processes studied by Deng
et al. [DvGHM08]. It might therefore be interesting to see how the modalities from concurrent
dynamic logics relate to the Hennessy-Milner modalities in their approach.
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A Basis

Almost every operation in this paper, as well as [FGS23b, FGS23a], can be defined in terms of
a basis of six operations that mix the relational and the multirelational language: the relational
operations −, ∩, / and the multirelational operations 1, ⋓, ∗. Here we extend the list from [FGS23a]
with definitions of the modal operators (all operations listed feature in our trilogy of articles, but
not all of them in the present paper).

� R ∪ S = −(−R ∩ −S)

� R− S = R ∩ −S

� ∅ = R ∩ −R

� U = −∅

� R↑ = R ⋓ U

� ∈ = 1↑

� Id = 1/1

� R⌣ = −(−Id/R)

� SR = −(−S/R⌣)

� ∋ = ∈⌣

� R\S = (S⌣/R⌣)⌣

� R÷ S = (R\S) ∩ (R⌣/S⌣)

� Λ(R) = R⌣ ÷ ∈

� P(R) = Λ(∋R)

� RP = P(R∋)

� µ = IdP

� Ω = ∈\∈

� C = ∈ ÷− ∈

� ∼R = RC

� R ⋒ S = ∼(∼R ⋓∼S)

� R↓ = X ⋒ U

� R↕ = R↑ ∩R↓

� 1⋓ = 1 ⋒∼1

� 1⋒ = ∼1⋓

� Rd = −∼R

� R⊙ S = ∼(R ∗ ∼S)

� R∗ = (Λ(∋1) ∗ 1⌣R1)µ

� R/S = R/S∗

� A⋓ = U1

� A⋒ = ∼A⋓

� ν(R) = R− 1⋓

� τ(R) = R ∩ 1⋓

� α(R) = R∋

� δi(R) = R↓ ∩ A⋓

� δo(R) = 1RP

� δ̃i(R) = R↑ ∩ A⋒

� δ̃o(R) = ∼δo(∼R)

� dom(R) = Id ∩RR⌣

� ¬P = Id − P

� ⟨R⟩rP = dom(RP )

� [R]rP = ¬⟨R⟩r¬P

� ⟨R⟩∗P = dom(R ∗ P )

� [R]∗P = ¬⟨R⟩∗¬P

� ⟨R⟩αP = ⟨α(R)⟩rP

� [R]αP = ¬⟨R⟩α¬P

� ⟨R⟩Gr = P(R⌣)

� [R]Gr = Λ(∋/R)

� ⟨R⟩G∗ = Λ(R↑⌣)

� [R]G∗ = Λ(R↑d⌣)

� ⟨R⟩Gα = ⟨α(R)⟩Gr

� [R]Gα = [α(R)]Gr

� R ⊑↑ S ⇔ S ⊆ R↑

� R ⊑↓ S ⇔ R ⊆ S↓

� R ⊑↕ S ⇔ R ⊑↓ S∧R ⊑↑ S

If ∗ is extended to relations, the simpler definition R∗ = Id ∗ R may be used. Alternatively,
we could of course replace Peleg composition by Peleg lifting in the basis. We could also replace
relational intersection ∩ with a multirelational intersection variant ∩ in the basis: relational ∩
is obtained by R ∩ S = α(R1 ∩ S1) which can be defined in terms of multirelational ∩ and the
rest of the basis. Yet we do not know whether a multirelational − could replace the relational
variant. Finally, relational / is required to define some of the operations in our list as it is the
only operation in the basis that can change types. We have so far not attempted to axiomatise
the basic operations in the sense of (heterogeneous) relation algebra [SS89], concurrent dynamic
algebra [FS16] or likewise.
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