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Abstract

Binary multirelations allow modelling alternating nondeterminism, for instance, in games or non-
deterministically evolving systems interacting with an environment. Such systems can show partial
or total functional behaviour at both levels of alternation, so that nondeterministic behaviour may
occur only at one level or both levels, or not at all. We study classes of inner and outer partial
and total functional multirelations in a multirelational language based on relation algebra and
power allegories. While it is known that general multirelations do not form a category, we show
in the multirelational language that the classes of deterministic multirelations mentioned form
categories with respect to Peleg composition from concurrent dynamic logic, and sometimes quan-
taloids. Some of these categories are isomorphic to the category of binary relations. We also
introduce determinisation maps that approximate multirelations either by binary relations or by
deterministic multirelations. Such maps are useful for defining modal operators on multirelations.

Keywords: binary relations, binary multirelations, categories, deterministic multirelations,
power allegories, quantaloids

1. Introduction

This is the second article in a trilogy on the inner structure of multirelations [5], their deter-
minisation and their algebras of modal operators [4].

Multirelations are binary relations of type X 7→ PY , which we study in the category Rel with
sets as objects and binary relations X 7→ Y as arrows. As explained in [5], they form models of
alternating angelic and demonic nondeterminism, while arbitrary relations are standard models
of angelic nondeterminism without alternation. At the outer or angelic level of nondeterminism,
each element in X can be related by a multirelation to one subset or many subsets of Y , or to
no set at all. At the inner or demonic level of nondeterminism, it can be related within each of
these subsets to one element or many elements, or to no element at all. Multirelational semantics
of programs with angelic and demonic nondeterminism have been proposed by Rewitzky [17].
Multirelations also feature implicitly, for instance, in the semantics of Parikh’s game logics [14],
in Peleg’s concurrent dynamic logic [15] and in the transition relations of alternating automata.

In the first part of this trilogy we have studied the inner or demonic structure of multirelations,
which complements the usual angelic boolean structure on relations. A typical inner operation is
the inner union of two multirelations R, S of the same type: if R and S relate an element a with
the sets B and C, respectively, then R ⋓ S relates a with B ∪C. Operations of inner intersection
and inner complementation can then be defined in the obvious way, performing set-intersection or
set-complementation on the second components of ordered pairs.

We have also discussed notions of inner univalence or inner partial functionality, inner totality
and inner determinism or functionality, which complement the standard outer notions from relation
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algebra. A multirelation is inner univalent if every element in its codomain is either empty or a
singleton set. Relating to the empty set thus represents inner partiality. A multirelation is therefore
inner total if every element in its domain is related to a non-empty set, and inner deterministic if
it is inner univalent and inner total. By contrast, an outer univalent multirelation is (the graph of)
a partial function, an outer total multirelation relates every element with some set, including the
empty one, and an outer deterministic multirelation is (the graph of) a function. Intuitively, inner
univalent multirelations can thus be seen as angelic multirelations that do not allow any inner or
demonic choices, while outer univalent multirelations can be seen as demonic, as they do not allow
any outer or angelic choices [17]. Inner deterministic multirelations are therefore strictly angelic,
as empty inner choices are forbidden. Outer deterministic multirelations are strictly demonic, as
empty outer choices are impossible.

The multirelation R = {(a, ∅), (b, {c}), (b,X)} on the set X = {a, b, c}, for example, is neither
outer nor inner univalent. It is not outer univalent because b is related to two different sets and
not inner univalent because b is related to a set with three different elements. It is not outer total
because c is not related to any element and not inner total because a is related to the empty set.
The multirelations S = R−{(b, {c})} and S∪{(c,X)} are outer univalent and outer deterministic,
respectively. The multirelations T = R − {(b,X)} and T − {(a, ∅)} are inner univalent and inner
deterministic, respectively.

Here we study the structure of inner and outer univalent and deterministic multirelations in
an algebraic multirelational language [6] that combines features of relation algebra [19], quan-
taloids [16, 18] and power allegories [2, 3] with specific operations for multirelations. We also
consider the determinisation of multirelations by relations or by deterministic multirelations.

Apart from the operations on the inner and outer structure mentioned, we consider the Peleg
composition of multirelations [15], which has been introduced in the context of concurrent dynamic
logic and is one of several possible compositions for multirelations. See [5, 7] for a discussion of this
operation, its relevance to computing and examples. Multirelations under Peleg composition do
not form categories because this operation is not associative. Yet specific classes of multirelations
do, for instance, the classes of deterministic or univalent multirelations (Proposition 2.8), which
follows from results in [6]. In Propositions 3.2 and 5.6 we show that inner deterministic and inner
univalent multirelations form categories with respect to Peleg composition as well. In particular,
the power transpose map from power allegories is in fact a functor from Rel to categories of
inner deterministic multirelations with respect to Peleg composition (Lemma 3.5). Moreover, the
categories of inner and outer deterministic multirelations are isomorphic to the categoryRel of sets
and relations (Proposition 3.6) and its enrichment in the form of quantaloids (Proposition 3.10).

We further introduce maps that approximate multirelations by relations or their isomorphic
inner or outer deterministic multirelations. These determinisation maps are related to the original
multirelation by Galois connections with respect to one of the inner preorders, which compare
the inner nondeterminism of multirelations (Proposition 4.3). They are also functors between the
categories of inner and outer deterministic multirelations (Corollary 4.1), and the inner and outer
deterministic multirelations arise as their fixpoints. One of the determinisation maps is further
used in the proof that inner univalent multirelations form a category (Proposition 5.6).

Apart from these main results, we present further structural insights, for instance, refinements
of the properties of inner or outer deterministic multirelations to inner or outer univalent or total
ones in Section 6 or an outline of properties of dual determinisation maps in Section 7. We also
present a number of calculational properties which belong in the conceptual context of this article,
but are only needed in the third part of our trilogy.

As in [5], we work in concrete extensions and enrichments of Rel, but with a view towards
future axiomatic approaches to our multirelational language. We therefore aim at algebraic proofs
if possible, but nevertheless present set-theoretic definitions of all important concepts. While many
properties in this article have simple set-theoretic proofs, proofs involving Peleg composition can
be surprisingly tedious and may involve a variant of the Axiom of Choice. Algebraic reasoning
often circumvents this complexity, which is another reason for emphasising it here. Beyond that,
as everywhere in this trilogy, we have used the Isabelle/HOL proof assistant to check most of
our results, in particular the more tedious ones. We have developed a substantial mathematical
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component for multirelations [10], and concrete power allegories more generally. Yet we did not
aim at a complete formalisation and our article is self-contained without these components.

2. Relations and Multirelations

We first recall the basics of binary relations and multirelations; see [5] and the references
therein for details. Our algebraic language of concrete relations and multirelations is based on
enrichments of the category Rel with sets as objects, relations as arrows and the identity or
diagonal relations as identity arrows. Yet in contrast to [5] we now extend the standard calculus
of relations [19] with concepts from power allegories [3] using in particular their connection with
the monad of the powerset functor in the category Set of sets and functions [2], and with specific
multirelational concepts from [6]. The richness of this language sometimes prevents us from listing
all properties used in calculations and proofs – we then refer to “standard” properties. We extend
the dependency list of relational and multirelational concepts of our multirelational language with
respect to a small basis from [5] accordingly in Appendix A.

2.1. Binary relations

The category Rel forms a quantaloid [18]: each of its homsets forms a complete lattice and
arrow composition preserves arbitrary sups in both arguments. Relational composition thus has
two residuals as right adjoints. The homsets of Rel form quantales based on complete atomic
boolean algebras. Moreover, relational converse is an involution and a contravariant endofunctor
of quantaloids. We write X 7→ Y for the homset Rel(X,Y ), IdX for the identity relation on X,
∅X,Y for the least and UX,Y for the greatest element in X 7→ Y , −R for the complement of R and
S −R for the relative complement S ∩−R, RS for the relational composition of relations R, S of
suitable types, R/S and R\S for the left and right residuals of R and S and R⌣ for the converse
of R. The modular law RS ∩ T ⊆ (R ∩ TS⌣)S links composition, intersection and converse in
Rel, so that this category forms in fact a modular quantaloid [18].

We need the properties T\S = (S⌣/T⌣)⌣, T/S = −(−TS⌣) and T\S = −(T⌣(−S)) of
residuals. We also need the following standard concepts of algebras of binary relations:

� the symmetric quotient T ÷ S : X 7→ Y of T : X 7→ Z and S : Y 7→ Z, defined as
T ÷ S = (T\S) ∩ (T⌣/S⌣),

� tests, which are relations R ⊆ Id , and whose relational composition is intersection,

� the domain map dom : (X 7→ Y ) → (X 7→ X) defined by dom(R) = IdX ∩ RR⌣ =
IdX ∩RUY,X = {(a, a) | ∃b. (a, b) ∈ R}.

Tests form a full subalgebra of Rel(X,X) for any X, which is again a complete atomic boolean
algebra in which multiplication coincides with binary inf.

We are particularly interested in deterministic (multi)relations. The relation R : X 7→ Y is

� total if dom(R) = IdX , or equivalently IdX ⊆ RR⌣,

� univalent, or a partial function, if R⌣R ⊆ IdY ,

� deterministic, or a function, if it is total and univalent.

Functions as deterministic relations in Rel are nothing but graphs of functions in Set. They can
be used to model programs as a subclass of nondeterministic specifications in program refinement
calculi. We need the equational modular law RS ∩ T = (R ∩ TS⌣)S for univalent S [20] in
calculations.

We further write R|A = {(a, b) ∈ R | a ∈ A} for the restriction of relation R to elements in the
set A, R(A) for the relational image of A under R and R(a) for R({a}).

Next we recall the basic concepts of power allegories [2, 3], on which our multirelational lan-
guage is based. The isomorphism between relations in X 7→ Y and nondeterministic functions in
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X → PY in Set can be expressed in Rel. Nondeterministic functions X → PY in Set correspond
of course to functions X 7→ PY in Rel.

The power transpose

Λ : (X 7→ Y ) → (X 7→ PY ), R 7→ {(a,R(a)) | a ∈ X}

maps relations X 7→ Y to functions in X 7→ PY , which are graphs of nondeterministic functions
X → PY in Set. In the other direction, relational postcomposition with the has-element relation
∋Y : PY 7→ Y , the converse of the set membership relation ∈Y : Y 7→ PY , maps relations, and
therefore functions in X 7→ PY , to relations in X 7→ Y . We henceforth write α = (−)∋. This
function satisfies

α : (X 7→ PY ) → (X 7→ Y ), R 7→
{
(a, b) | b ∈

⋃
R(a)

}
.

Algebraically, Λ(R) = R⌣ ÷ ∈, and we will see below how ∋ and α can be expressed in terms of
basic relational and multirelational operations.

The following fact from [2] summarises the relationship between Λ and α.

Lemma 2.1. Let R : X 7→ Y and let f : X 7→ PY be deterministic. Then

1. f = Λ(R) ⇔ R = α(f),

2. α(Λ(R)) = R and Λ(α(f)) = f ,

3. fΛ(R) = Λ(fR) and Λ(∋X) = IdPX .

The lower triangle in the following diagram therefore commutes:

X 7→ PY X 7→ PY

X 7→ Y X 7→ Y

α α

id

Λ

The upper triangle with the dotted arrow is discussed in Section 4 below. We show that it
commutes if we label the dotted arrow with id and if the multirelations in the upper row are
deterministic. In this case, Λ and α form a bijective pair.

We also need the relational image functor of power allegories:

P : (X 7→ Y ) → (PX 7→ PY ), R 7→ Λ(∋XR).

Expanding definitions, P(R) = {(A,R(A)) | A ⊆ X}, so that the relational image, given by the
covariant powerset functor in Set, is coded again as a graph. It is deterministic by definition. As
a functor, it satisfies P(RS) = P(R)P(S) and P(Id) = Id .

The unit and multiplication of the powerset monad are recovered relationally as ηX : X 7→ PX
and µX : P2X 7→ PX, so that ηX = Λ(IdX) and µX = P(∋X). Alternatively, ηX = IdX ÷ ∈X

and, expanding definitions, ηX = {(a, {a}) | a ∈ X}.

Lemma 2.2. Let R : X 7→ Y , S : Y 7→ Z, let f : X 7→ Y be deterministic. Then

1. Λ(RS) = Λ(R)P(S),

2. ηP(R) = Λ(R) and α(ηP(R)) = R, hence P has a right inverse,

3. Λ(f) = fη,

4. η and µ are natural transformations: ηP(f) = fη and P2(f)µ = µP(f),

5. the monad axioms hold: P(µ)µ = µµ, P(η)µ = Id and ηµ = Id,

6. α(η) = Id.

Rather unsurprisingly, P does not form a monad on Rel; it only does on its wide subcategory
Set (up to isomorphism). In particular, property (4) above holds only for deterministic relations.
This shows that the standard monadic machinery of category theory does not translate directly
from Set to P in Rel.

The following relations are standard in relation algebra and can be defined in power allegories:

4



� the subset relation ΩY = ∈Y \∈Y = {(A,B) | A ⊆ B ⊆ Y },

� the complementation relation C = ∈Y ÷− ∈Y = {(A,−A) | A ⊆ Y }.

We need the following fact in proofs in our multirelational language. We add algebraic proofs
because it seems novel.

Lemma 2.3. Let R : X 7→ Y . Then

1. Λ(R)C = Λ(−R),

2. Λ(R)Ω = R⌣\∈ = (∋/R)⌣.

Proof. For (1), Λ(R)C = Λ(R)Λ(−∋) = Λ(Λ(R)(−∋)) = Λ(−(Λ(R)∋)) = Λ(−R). This uses
properties of Lemma 2.1 and determinism of Λ(R).

For (2), Λ(R)Ω = Λ(R)(−(∋(−∈))) = −(Λ(R)∋(−∈)) = −(R(−∈)) = R⌣\∈, using the def-
inition of Ω in the first step, determinism of Λ(R) in the second, Lemma 2.1 in the third and
properties of residuals in the fourth.

The power test [6] P∗ : PX 7→ PX of a test P ⊆ IdX is defined as

P∗ = (∈X\P∈X) ∩ IdPX = {(A,A) | ∀a ∈ A. (a, a) ∈ P}.

We use it for defining the Peleg composition of multirelations in the following section.
Finally, for R,S : X 7→ Y , we write S ⊆d R if S is univalent, dom(S) = dom(R) and S ⊆ R.

This allows us to decompose any relation as R =
⋃

S⊆dR
S [5, Lemma 2.1].

Relations similar to ⊆d appear in program refinement: S ⊆d R, in particular, means that S
maximally post-refines R by eliminating all nondeterminism while keeping its domain unchanged
[9, 13].

2.2. Multirelations

A multirelation is an arrow X 7→ PY in Rel and thus a doubly-nondeterministic function
X → P2Y in Set. Multirelations do not form a category: the double powerset functor does not
yield a suitable monad [11]. Hence there is no associative composition with suitable units [6].

The Peleg composition ∗ : (X 7→ PY )× (Y 7→ PZ) → (X 7→ PZ) of multirelations [15] can be
defined in terms of the Peleg lifting (−)∗ : (X 7→ PY ) → (PX 7→ PY ) of multirelations, which in
turn can be defined in terms of the Kleisli lifting (−)P : (X 7→ PY ) → (PX 7→ PY ) [6]:

RP = P(α(R)), R∗ = dom(R)∗
⋃

S⊆dR

SP , R ∗ S = RS∗.

The definition of R∗ uses the power test dom(R)∗. Expanding definitions,

RP =
{
(A,B) | B =

⋃
R(A)

}
,

R∗ =
{
(A,B) | ∃f : X → PY. f |A ⊆ R ∧B =

⋃
f(A)

}
,

R ∗ S =
{
(a,C) | ∃B. (a,B) ∈ R ∧ ∃f : Y → PZ. f |B ⊆ S ∧ C =

⋃
f(B)

}
.

The Kleisli lifting is the multirelational analogue of the Kleisli lifting or Kleisli extension in the
Kleisli category of the powerset monad in Set. Its standard definition translates to multirelations.

Lemma 2.4. Let R : X 7→ PY . Then RP = P(R)µ.

It can also be seen as the relational image of the relational approximation of any multirelation
using α. By definition, Kleisli liftings of multirelations are functions in Rel.

The units of Peleg composition are given by the multirelations ηX . Because of this, we hence-
forth write 1X for ηX . The following fact is structurally interesting and helpful for calculating
with univalent and deterministic multirelations (see also Lemma 2.6 below).
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Lemma 2.5. Let R : X 7→ PY , S : Y 7→ PZ and let f : X 7→ PY be a function. Then the laws
(RSP)P = RPSP , ηP = Id and ηfP = f of extension systems hold.

The standard properties P(R) = (Rη)P and µ = IdP , which recover the powerset monad from
its extension system, still hold for multirelations. Once again, the extension system axioms work
only for deterministic multirelations – the standard arrows of the Kleisli category of the powerset
functor.

The interaction of Peleg composition with the outer structure is weak; see [7] for examples.
As expected, it is not associative: only (R ∗ S) ∗ T ⊆ R ∗ (S ∗ T ) holds. Hence (RS∗)∗ need
not be equal to R∗S∗, and multirelations do not form a category under Peleg composition. The
composition becomes associative if the third factor is union-closed [6]. Peleg composition also
preserves arbitrary unions in its first argument.

The following simple algebraic descriptions of univalent and deterministic multirelations are
useful in proofs.

Lemma 2.6 ([6]). Let R : X 7→ PY . Then

1. R = dom(R)1XRP and R∗ = dom(R)∗RP if R is univalent,

2. R = 1XRP and R∗ = RP if R is deterministic.

As Kleisli liftings of multirelations are functions, it follows from (1) that Peleg liftings of
univalent multirelations are univalent. Alternatively, R : X 7→ PY is univalent if and only if, for
all S : X 7→ PY , dom(R) = dom(S) and S ⊆ R imply S = R [6]. Thus

S∗ = dom(S)∗
⋃

T⊆dS

TP =
⋃

T⊆dS

dom(S)∗TP =
⋃

T⊆dS

dom(T )∗TP =
⋃

T⊆dS

T∗,

as the T are univalent, and therefore

R ∗ S = R
⋃

T⊆dS

T∗ = R dom(S)∗
⋃

T⊆dS

TP = R dom(S)∗
⋃

T⊆dS

P(α(T )).

Univalent multirelations have stronger algebraic properties.

Lemma 2.7 ([6]). Let R, S and f be composable multirelations such that f is univalent. Then

1. the laws (Sf∗)∗ = S∗f∗, η∗ = Id and ηR∗ = R of extension systems hold,

2. (R ∗ S) ∗ f = R ∗ (S ∗ f).

The following proposition follows immediately.

Proposition 2.8. The univalent multirelations and the deterministic multirelations form cate-
gories with respect to Peleg composition and the 1X .

Proof. Lemma 2.7 shows that Peleg composition of univalent and therefore deterministic multire-
lations is associative. The 1X are deterministic and hence univalent. It remains to show that ∗
preserves univalence and determinism. If R and S are composable univalent multirelations, then
R ∗S = RS∗ is univalent because S∗ is univalent and relational composition preserves univalence.
If R and S are also total, then R ∗ S = RSP is total, because SP is deterministic and relational
composition preserves totality.

Proposition 2.8 thus follows directly from results in [6]. We have merely expressed it in terms
of categories, to align it with similar properties for inner deterministic and inner univalent mul-
tirelations introduced below. We henceforth write URel and DRel for the categories of univalent
and deterministic multirelations.

In Remark 3.7 and Proposition 3.10 below we give an alternative, more structural proof for
deterministic multirelations. Section 3.3 shows that deterministic multirelations form in fact
quantaloids, and it features an analysis of related properties, including the relationship between
the Kleisli lifting of multirelations and the Kleisli category of the powerset functor.
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Definitions of inner univalence, inner totality and inner determinism depend on inner operations
on multirelations. These have been studied in detail in [5], based on previous work [7, 8, 17].
Algebraic definitions relative to a small basis can be found in Appendix A.

For R,S : X 7→ PY , one can define the

� inner union R ⋓ S = {(a,A ∪B) | (a,A) ∈ R ∧ (a,B) ∈ S} with unit 1⋓ = {(a, ∅) | a ∈ X},

� inner complementation ∼R = RC = {(a,−A) | (a,A) ∈ R},

� set of atoms A⋓ = {(a, {b}) | a ∈ X ∧ b ∈ Y } in X 7→ PY .

The inner intersection and its unit are then obtained as R ⋒ S = ∼(∼R ⋓ ∼S) and 1⋒ = ∼1⋓.
The operations ⋓ and ⋒ are associative and commutative, but need not be idempotent.

The multirelation R : X 7→ Y is

� inner total if R ⊆ −1⋓, that is, B is non-empty for each (a,B) ∈ R,

� inner univalent if R ⊆ A⋓ ∪ 1⋓, that is, B is either a singleton or empty for each (a,B) ∈ R,

� inner deterministic if it is inner total and inner univalent, in which case B ⊆ Y is a singleton
set whenever (a,B) ∈ R for some a ∈ X.

In the following we write outer total, outer univalent and outer deterministic instead of total,
univalent and deterministic, respectively, to contrast these concepts with the inner ones.

Sets of inner univalent, inner total and inner deterministic multirelations can be characterised
as fixpoints.

Lemma 2.9 ([5, Lemma 3.9]).

1. The inner univalent multirelations are the fixpoints of (−) ∩ (A⋓ ∪ 1⋓).

2. The inner total multirelations are the fixpoints of (−)− 1⋓.

3. The inner deterministic multirelations are the fixpoints of (−) ∩ A⋓ and (−)1⌣1.

We also need the following closures and inner preorder, which compare the inner nondetermin-
ism of multirelations. For R : X 7→ PY ,

� the up-closure R↑ = R ⋓ U = RΩ = {(a,A) | ∃(a,B) ∈ R. B ⊆ A} and the Smyth preorder
R ⊑↑ S ⇔ S ⊆ R↑ with equivalence =↑,

� the down-closure R↓ = R ⋒ U = RΩ⌣ = {(a,A) | ∃(a,B) ∈ R. A ⊆ B} and the Hoare
preorder R ⊑↓ S ⇔ R ⊆ S↓ with equivalence =↓.

The convex closure can then be defined as R↕ = R↑ ∩ R↓, and the Egli-Milner preorder as
R ⊑↕ S ⇔ R ⊑↓ S ∧ R ⊑↑ S with equivalence =↕. They are needed, for instance, in Lemma 3.8
below.

The up-closure and down-closure are related by inner duality. Using up-closure, ∈ = 1↑.
Moreover, (1↓)∗ = (1 ∪ 1⋓)∗ = Ω⌣, and thus R↓ = R ∗ 1↓ for all R : X 7→ PY . See Appendix A
and [5] for context.

3. Outer and Inner Deterministic Multirelations

Relations X 7→ Y embed into multirelations X 7→ PY in two natural ways: postcomposition
with 1Y lifts the elements in Y to singleton sets in PY ; taking the power transpose Λ represents
the standard equivalent nondeterministic function as a multirelation X 7→ PX. The first of these
embeddings yields an inner deterministic multirelation, the second an outer deterministic one:

{(a, {b}) | (a, b) ∈ R} R {(a,R(a)) | a ∈ X}.Λ(−)1Y
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These embeddings extend to isomorphisms between the categories Rel, categories of inner deter-
ministic multirelations with Kleisli composition as arrow compositions and identity arrows 1X , and
categories of outer deterministic multirelations with the same composition and identity arrows.
As 1X is the unit of the powerset monad in relational form, we henceforth write ηX = (−)1X .

The functions Λ, α and η become functors in this setting. The isomorphism between Rel
and the category of outer deterministic multirelations is just that between Rel and the Kleisli
category of the powerset monad in relational form. That between Rel and the category of inner
deterministic multirelations is trivial. A formal proof in our relational language however, requires
some work. But first we check that inner deterministic multirelations form a category.

3.1. The category of inner deterministic multirelations

We start with a technical lemma.

Lemma 3.1. Let R, S, T be composable multirelations and R inner deterministic. Then

1. R ∗ S = R1⌣S,

2. R ∗ (S ∗ T ) = (R ∗ S) ∗ T ,
3. R ∗ S = (R ∗ S)1⌣1 if S is inner deterministic,

4. α(R) = R1⌣.

Proof. For proofs of (1) and (2) see [5]. For (3), R ∗ S = R ∗ S1⌣1 = R1⌣S1⌣1 = (R ∗ S)1⌣1,
using Lemma 2.9(3) and (1). For (4), α(R) = R1⌣1∋ = R1⌣α(1) = R1⌣ using Lemmas 2.9(3)
and 2.2.

The proofs of (1) and (2) are as simple as those of (3) and (4). The crucial insight is that inner
deterministic multirelations are fixpoints of (−)1⌣1 (Lemma 2.9(3)). The following fact is then
straightforward.

Proposition 3.2. The inner deterministic multirelations form a category with respect to Peleg
composition and the 1X .

Proof. Lemma 3.1(2) shows that the Peleg composition of composable inner deterministic mul-
tirelations is associative. The 1X are inner deterministic by Lemma 2.9(3) since 1 ⊆ U1 = A⋓.
Lemmas 3.1(3) and 2.9(3) imply that Peleg composition preserves inner determinism.

We henceforth write IDRel for this category. We present an alternative, more structural proof
of Proposition 3.2 in the following section.

3.2. Isomorphisms between Rel, DRel and IDRel

Next we study the bijections between arrows in Rel, DRel and IDRel in detail. The results
for outer deterministic multirelations are known; those for inner deterministic ones are new.

Lemma 3.3. For every R : X 7→ Y , Λ(R) is outer deterministic and η(R) inner deterministic.

Proof. This is well known for outer determinism [2]. For inner determinism, η(R) = R1 ⊆ U1 =
A⋓, since relational composition preserves the order.

Recall from Lemma 2.1 that α ◦ Λ = idX 7→Y , while Λ ◦ α = idX 7→PY holds for outer deter-
ministic multirelations. Hence Λ and α form a bijective pair between arrows in Rel and DRel.
A similar fact holds for η and α.

Lemma 3.4. The functions α and η form a bijective pair between arrows in Rel and IDRel.

Proof. We need to check α◦ηY = idX 7→Y on relations and ηY ◦α = idX 7→PY on inner deterministic
multirelations. For the first identity, α(η(R)) = α(R1) = Rα(1) = R Id = R using Lemma 2.2.
For the second one, η(α(R)) = R1⌣1 = R, using Lemma 2.9(3) and Lemma 3.1(4).
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The diagram from Section 2.1 can thus be expanded:

X 7→ PY X 7→ PY

X 7→ Y X 7→ Y

X 7→ PY X 7→ PY

α α

id

Λ

η
α α

Now the two triangles formed by solid arrows commute. The dotted arrows are discussed in Section
4. Labelling the lower dotted arrow with id makes the lower triangle commute if multirelations in
the lower row are inner deterministic.

Lemma 3.4 implies that S = η(R) ⇔ R = α(S) holds for any R : X 7→ Y and inner determin-
istic S : X 7→ PY .

Lemma 3.5. The maps Λ, η and α extend to functors Λ : Rel → DRel, η : Rel → IDRel,
α : DRel → Rel and α : IDRel → Rel.

Proof. The object components of these functors are identities, viewing multirelations X 7→ PY
in Rel Kleisli-style as arrows from X to Y . Hence we focus on arrows. For R : X 7→ Y and
S : Y 7→ Z, we must check that

1. Λ(RS) = Λ(R) ∗ Λ(S) and Λ(IdX) = 1X ,

2. η(RS) = η(R) ∗ η(S) and η(IdX) = 1X ,

3. α(R ∗ S) = α(R)α(S) and α(1X) = IdX if R and S are inner or outer deterministic.

For (1), Λ(RS) = Λ(R)P(S) = Λ(R)Λ(S)P = Λ(R)Λ(S)∗ = Λ(R) ∗ Λ(S), where the second
step holds by Λ(S)P = P(Λ(S))µ = P(Λ(S))P(∋) = P(Λ(S)∋) = P(S).

For (2), η(R) ∗ η(S) = R1 ∗ S1 = R1(S1)∗ = R(1 ∗ S1) = RS1 = η(RS).
For (3), suppose R, S are outer deterministic. Then R ∗ S is outer deterministic by Proposi-

tion 2.8. Hence α(R)α(S) = α(R ∗ S) if and only if Λ(α(R)α(S)) = R ∗ S because Λ and α form
a bijective pair. Using this property again with (1), Λ(α(R)α(S)) = Λ(α(R)) ∗ Λ(α(S)) = R ∗ S.
The proof for inner determinism, α and η is similar using Proposition 3.2.

Proposition 3.6. The categories Rel, DRel and IDRel are isomorphic.

Proof. Immediate from Lemmas 3.4 and 3.5.

The map Λ thus extends to a fully faithful functor Rel → DRel, η extends to a fully faithful
functor Rel → IDRel and α extends to fully faithful functors in the other directions. The
isomorphisms betweenRel, DRel and IDRel can be expressed in the language of power allegories.

Remark 3.7. The proof of Lemma 3.5 yields an alternative proof that the inner and outer
deterministic multirelations form categories. It shows that Peleg composition preserves inner and
outer determinism and that the 1X are inner and outer deterministic. It implies that the Peleg
composition of composable outer deterministic multirelations R, S and T is associative:

(R ∗ S) ∗ T = (Λ(α(R)) ∗ Λ(α(S))) ∗ Λ(α(T ))
= Λ(α(R)α(S)α(T ))

= Λ(α(R)) ∗ (Λ(α(S)) ∗ Λ(α(T )))
= R ∗ (S ∗ T ),

A proof of associativity for inner deterministic multirelations is similar and left to the reader.

The previous results show that Peleg composition is a faithful representation of Kleisli composi-
tion of nondeterministic functions modelled as outer deterministic multirelations, and of relational
composition of relations modelled as inner deterministic multirelations. This fact has been known
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for outer deterministic multirelations, yet the proof in this section is more structural in terms of
Λ and α. As an interesting side effect, it shows that Λ is a functor Rel → DRel. Obviously, it
could not be presented as such in textbooks such as [2, 3], as the target category DRel based on
Peleg composition and its units has been missing. The proof for inner deterministic multirelations
is entirely new.

3.3. Quantaloids of deterministic multirelations

An interesting question is how the functors α, η and Λ transport the inclusion order on mul-
tirelations and relations.

Lemma 3.8.

1. For relations R and S, R ⊆ S implies η(R) ⊆ η(S) and Λ(R) ⊑↕ Λ(S).

2. For multirelations R and S, R ⊆ S implies α(R) ⊆ α(S).

Proof. We first show Λ(R) ⊑↑ Λ(S), that is, Λ(S) ⊆ Λ(R)↑ = Λ(R)Ω = R⌣\∈ (see Lemma 2.3(2)).
By residuation this is equivalent to R⌣Λ(S) ⊆ ∈. Since Λ(S) is a function, this is equivalent to
R ⊆ Λ(S)∋ = S using Lemma 2.1, which is the assumption. Since Λ(R) and Λ(S) are functions,
Λ(R) ⊑↕ Λ(S) follows because ⊑↑, ⊑↓ and ⊑↕ coincide on outer deterministic multirelations [5,
Proposition 5.8]. The remaining claims follow from standard relational properties.

The use of the Egli-Milner preorder in (1) thus captures the fact that the relationship holds
also for ⊑↓ and ⊑↑ more compactly.

Example 3.9. Consider relations R = ∅ and S = {(a, a)} on the set {a}. Then R ⊆ S, but
Λ(R) = {(a, ∅)} ⊈ {(a, {a})} = Λ(S).

A deeper study of these orders seems to require bicategories and is beyond the scope of this
article.

The categories DRel and IDRel are enriched. We define arbitrary inner unions by

⋓
i∈I

Ri =

{(
a,
⋃
i∈I

Ai

)∣∣∣∣∣ ∀i ∈ I. (a,Ai) ∈ Ri

}

to capture one of the quantaloid structures that arise. Yet note that multirelations under Peleg
composition and the outer operations do not form quantaloids: Peleg composition is not associative
and does not preserve the sups needed [7, 8].

Proposition 3.10. The inner deterministic multirelations with
⋃

and the outer deterministic
multirelations with ⋓ form quantaloids isomorphic to the quantaloid of binary relations.

Proof. For the quantaloid of inner deterministic multirelations, recall that relational composition
preserves arbitrary unions. Hence so do the isomorphisms η and α between Rel and IDRel:

η

(⋃
i∈I

Ri

)
=
⋃
i∈I

η(Ri) and α

(⋃
i∈I

Si

)
=
⋃
i∈I

α(Si),

if all Si are inner deterministic. Inner determinism is therefore preserved by arbitrary unions and
Peleg composition distributes over arbitrary unions of inner deterministic multirelations.

For the quantaloid of outer deterministic multirelations, the isomorphisms α and Λ between
Rel and DRel satisfy

Λ

(⋃
i∈I

Ri

)
=⋓

i∈I

Λ(Ri) and α

(
⋓
i∈I

Si

)
=
⋃
i∈I

α(Si)

if all Si are outer deterministic. Further, the definition of arbitrary inner unions implies that they
preserve outer determinism. Hence Peleg composition distributes over arbitrary inner unions of
outer deterministic multirelations.
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Remark 3.11. The inner union operation is idempotent on outer univalent and hence on outer
deterministic multirelations [5, Lemma 3.6]. The order of the complete lattices in DRel can be
defined via R ≤ S ⇔ R ⋓ S = S. It is the natural order for outer deterministic multirelations [5,
Lemma 5.9].

Remark 3.12. A Kleisli composition of multirelations can be defined as R ◦P S = RSP [6]. It
satisfies the standard identity R ◦P S = RP(S)µ, is associative on arbitrary multirelations of
appropriate type and has 1 as its right unit. Moreover, 1 is a left unit of Kleisli composition for
outer deterministic multirelations. By Lemma 2.6, the Peleg and Kleisli liftings coincide on DRel.
Finally, DRel is isomorphic to the Kleisli category of the powerset functor in Set, using the graph
functor to map from X → PY to X 7→ PY , which is clearly bijective.

4. Determinisation of Multirelations

The maps Λ ◦ α and η ◦ α approximate multirelations by relations modelled as isomorphic
inner or outer deterministic multirelations. They also yield the isomorphism between DRel and
IDRel. We study them in this section.

4.1. Determinisation maps
Let R : X 7→ PY be a multirelation. The outer determinisation or fusion map

δo = Λ ◦ α

sends R to the outer deterministic multirelation isomorphic to the relation α(R). The inner
determinisation or fission map

δi = η ◦ α
sends R to the inner deterministic multirelation isomorphic to α(R). This is expressed in the
following commuting diagram, obtained by replacing the dotted arrows in previous ones:

X 7→ PY X 7→ PY

X 7→ Y X 7→ Y

X 7→ PY X 7→ PY

δo

α α

id

Λ

η

δi

α α

Set-theoretically, the determinisation maps are

δo(R) = {(a,B) | B =
⋃

R(a)} and δi(R) = {(a, {b}) | b ∈
⋃

R(a)}.

Composing the bijections in the diagram above from bottom to top and vice versa yields the
following corollary to Proposition 3.6.

Corollary 4.1. The functors δi : DRel → IDRel and δo : IDRel → DRel are isomorphisms.
They preserve the quantaloid structure with

⋃
for inner deterministic multirelations and ⋓ for

outer deterministic ones.

For outer deterministic multirelations, therefore, δo ◦ δi = idX 7→PY and for inner deterministic
ones, δi ◦ δo = idX 7→PY and we get the universal property R = δi(S) ⇔ S = δo(R) for inner
deterministic R and outer deterministic S. By functoriality, δi(R ∗ S) = δi(R) ∗ δi(S) if R, S are
outer deterministic and δo(R ∗ S) = δo(R) ∗ δo(S) if R, S are inner deterministic.

The determinisation maps also allow us to represent inner and outer deterministic multirela-
tions as fixpoints.

Corollary 4.2. The inner and outer deterministic multirelations are precisely the fixpoints of δi
and δo, respectively.

Proof. If R is inner deterministic, then δi(R) = η(α(R)) = R by Lemma 3.4. If δi(R) = R, then
R is inner deterministic by Lemma 3.3. The proof for outer determinism is similar.

11



4.2. Galois connections between relations and multirelations

The universal properties for α and Λ or η for relations and outer or inner deterministic mul-
tirelations generalise to Galois connections on arbitrary multirelations. These use ⊆ on relations
and ⊑↓ on multirelations. Beyond the identification of categories and quantaloids of deterministic
multirelations, this is another main contribution of this article.

Proposition 4.3. Let R,S : X 7→ PY and T : X 7→ Y . Then

1. α(R) ⊆ T ⇔ R ⊑↓ Λ(T ), η(T ) ⊑↓ S ⇔ T ⊆ α(S) and δi(R) ⊑↓ S ⇔ R ⊑↓ δo(S),

2. α(R ⋒ S) = α(R) ∩ α(S),

3. δo is a closure and δi an interior operator,

4. (α,Λ) and (α, η) are epi-mono-factorisations of δo and δi, both unique up to isomorphism,

5. δo(R) is the ⊑↓-least outer deterministic multirelation above R and δi(R) the ⊑↓-greatest
inner deterministic multirelation below R.

Proof. For (1), recall that R ⊑↓ S ⇔ R ⊆ SΩ⌣ and Ω⌣ = ∋/∋. For the first Galois connection,
α(R) ⊆ T ⇔ R ⊆ T/∋ using the standard Galois connection for left residuals. The claim then
follows from T/∋ = (Λ(T )∋)/∋ = Λ(T )Ω⌣, using a general law of residuals ((RS)/Q = R(S/Q)
for all composable relations R and S such that R is deterministic) in the last step. For the second
Galois connection, first suppose η(T ) ⊆ SΩ⌣. Then T ⊆ SΩ⌣∋ = α(S), using α ◦ η = id and ⊆-
preservation of α in the first step, and (R/R)R = R, which holds for all relations R, in the second
one. Conversely, suppose T ⊆ α(S). Then η(T ) ⊆ S∋1 ⊆ SΩ⌣, because ∋1∋ = ∋α(Λ(Id)) = ∋
and therefore ∋1 ⊆ Ω⌣ by the Galois connection for left residuals. The third Galois connection is
then immediate.

Item (2) follows from a simple set-theoretic calculation.
Property (3) would be standard for Galois connections over partial orders, but idempotency

does not follow in general for preorders. In this specific instance, δo ◦ δo = δo and δi ◦ δi = δi hold
because α ◦ Λ = id = α ◦ η. However, we give a more general proof for Galois connections where
one of the two preorders is a partial order. Assume f(x) ≤B y ⇔ x ≤A g(y) for f : A → B and
g : B → A and preorders ≤A on A and ≤B on B. First, f ◦ g ◦ f = f if ≤B is antisymmetric:
f(g(f(x))) ≤ f(x) since f ◦ g is decreasing, and f(x) ≤ f(g(f(x))) since f is order-preserving and
g ◦ f is increasing. Hence f ◦ g ◦ f ◦ g = f ◦ g and g ◦ f ◦ g ◦ f = g ◦ f . By duality, g ◦ f ◦ g = g if
≤A is antisymmetric, so f ◦ g and g ◦ f are idempotent also in this case.

Idempotency of δo follows from (1) by instantiating f = α and g = Λ using ⊆ as ≤B . Idempo-
tency of δi follows by instantiating f = η and g = α using ⊆ as ≤A. The remaining requirements
of Galois connections follow from (1) also for preorders.

For (4), surjectivity of α and injectivity of Λ and η is immediate from α ◦ Λ = id = α ◦ η. For
uniqueness, note that every function in Set has this property, and the proof is standard.

For (5), R ⊑↓ δo(R) by (3). Now suppose δo(S) = S and R ⊑↓ S. Then δo(R) ⊑↓ δo(S) = S
by order-preservation of δo. The proof for δi is similar.

Property (1) can be dualised using inner complementation to obtain Galois connections for
⊑↑; see also Section 7. The properties in (1) and (2) can be summarised in the language of topos
theory by saying that the adjunction (α,Λ) is an essential geometric morphism – but of course
Rel does not form a topos. Property (3) shows that δo is a monad and δi a comonad on ⊑↓, both
of which are idempotent. As usual, the unit and counit are arrows R ⊑↓ δo(R) and δi(R) ⊑↓ R,
the multiplication and comultiplication are arrows δo(δo(R)) ⊑↓ δo(R) and δi(R) ⊑↓ δi(δi(R)).

4.3. Expressing the determinisation maps in a multirelational language

With a view on a multirelational language, it is worth noting that δo and δi can be expressed
in multirelational terms without going back to general relations or power allegories. This requires
two additional concepts from the inner structure: the set of co-atoms A⋒ = ∼A⋓ = {(a, Y −{b}) |
a ∈ X ∧ b ∈ Y } in X 7→ PY and the duality operation Rd = −∼R, which relates the inner and
the outer structure [5].
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Lemma 4.4. Let R : X 7→ PY . Then

1. δi(R) = R↓ ∩ A⋓,

2. δo(R)↓ = −((−δi(R) ∩ A⋓)↑) = −((−(R↓) ∩ A⋓)↑),
3. δo(R)↑ = δi(R)↑d = −((∼δi(R))↓) = −((∼(R↓) ∩ A⋒)↓),
4. δo(R) = −((−(R↓) ∩ A⋓)↑) ∩ −((∼(R↓) ∩ A⋒)↓).

Proof. For (1), R↓ ∩ A⋓ = RΩ⌣ ∩ U1 = R(Ω⌣ ∩ U1), hence it suffices to show

∋1 = Ω⌣ ∩ U1 = (∋/∋) ∩ U1.

The inclusion ⊆ follows by residuation from ∋1∋ = α(η(∋)) = ∋. The opposite inclusion follows
from −∋1 ⊆ −∋∈ = −(∋/∋) using boolean properties.

For (2),

−((−δi(R) ∩ A⋓)↑) = −(−(R∋1)1⌣1Ω)
= −(−(R∋11⌣)∈)
= −(−(R∋)∈)
= R∋/∋
= Λ(R∋)∋/∋
= Λ(R∋)(∋/∋)
= δo(R)↓

using Lemma 2.9 in the first step. The second equality follows by (1) and boolean algebra.
For (3),

δi(R)↑d = −∼(δi(R)↑)
= −((∼δi(R))↓)
= −(δi(R)CΩ⌣)

= −(α(R)1ΩC)

= −(α(R)∈C)

= −(α(R)(−∈))
= α(R)⌣\∈
= Λ(α(R))Ω

= δo(R)↑

using Lemma 2.3. The remaining equality follows again by (1).
Item (4) follows from (2) and (3) since δo(R) is convex-closed.

4.4. Properties of approximation and determinisation

In light of Lemma 3.5 and Corollary 4.1 it is natural to ask how α translates arbitrary Peleg
compositions of multirelations and likewise for δo and δi, which are based on α. It can be expected
that these are no longer strict functors. Here we show that they are at least (op)lax.

First we show how item (3) in the proof of Lemma 3.5 generalises to arbitrary multirelations.

Lemma 4.5. Let R : X 7→ PY and S : Y 7→ PZ. Then

1. α(R∗) = α(dom(R)∗)α(R),

2. α(R ∗ S) ⊆ α(R)α(S),

3. α(R↓) = α(R).
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Proof. For (1), ∋α(T ) = α(Λ(∋T∋)) = α(TP). Thus

α(R∗) = dom(R)∗
⋃

T⊆dR

α(TP)

= dom(R)∗
⋃

T⊆dR

∋α(T )

= dom(R)∗∋α(R)

= α(dom(R)∗)α(R).

This implies (2) because α(R ∗ S) = Rα(S∗) ⊆ Rα(1)α(S) = α(R)α(S).
For (3), α(R↓) = RΩ⌣∋ = R∋ = α(R) since ∈Ω = ∈.

Part (2) above cannot be strengthened to an equality. Structure is lost by approximation.

Example 4.6. For R = {(a, {a, b})},

α(R ∗R) = α(∅) = ∅ ⊂ {(a, a), (a, b)} = α(R) = α(R)α(R).

Lemma 4.5 and Example 4.6 are important for the study of modal operators on multirelations
in the third part of this trilogy [4]. Before proving an analogous lemma for δo and δi we note
another property of these maps that is needed in [4].

Lemma 4.7. δi ◦ δi = δi, δo ◦ δo = δo, δi ◦ δo = δi and δo ◦ δi = δo.

Proof. The first two properties are part of the closure conditions in Proposition 4.3. The proof of
the remaining ones are similar.

Lemma 4.8. Let R : X 7→ PY and S : Y → PZ. Then

1. δi(R) ∗ S = α(R)S,
2. δi(R ∗ S) ⊆ δi(R) ∗ δi(S),
3. δo(R ∗ S) ⊑↕ δo(R) ∗ δo(S).

Proof. For (1), δi(R) ∗ S = α(R)1S∗ = α(R)(1 ∗ S) = α(R)S.
For (2), δi(R ∗ S) = η(α(R ∗ S)) ⊆ η(α(R)α(S)) = η(α(R)) ∗ η(α(S)) = δi(R) ∗ δi(S) using

Lemmas 4.5 and 3.5.
For (3), δo(R ∗ S) = Λ(α(R ∗ S)) ⊑↕ Λ(α(R)α(S)) = Λ(α(R)) ∗ Λ(α(S)) = δo(R) ∗ δo(S) using

Lemmas 4.5, 3.8 and 3.5.

Item (3) highlights once again the relevance of the Egli-Milner preorder.
The final lemma of this section relates outer determinism with the Peleg lifting and other

standard notions of power allegories. Its proof is immediate from properties of Section 2.

Lemma 4.9. Let R : X 7→ PY . Then

1. RP = δo(∋R),
2. δo(R) = ηRP = Λ(R)µ.

5. Category of Inner Univalent Multirelations

It remains to describe the category of inner univalent multirelations. As it is not isomorphic
to Rel, we include different multirelational techniques.

Inner total multirelations have previously been called non-terminal [8], writing ν(R) for the
set of non-terminal elements of R: those pairs in R whose second component is not ∅, that is,
ν(R) = R− 1⋓. In addition, the map τ(R) = R ∗ ∅ = R∩ 1⋓ projects on the terminal elements of
R: those pairs in R whose second component is ∅. Every multirelation can thus be decomposed
into its terminal and non-terminal part:

R = ν(R) ∪ τ(R) and ν(R) ∩ τ(R) = ∅.

Note that products and coproducts in Rel coincide – both are disjoint unions – so that we may
write R = (ν(R), τ(R)).
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Lemma 5.1 ([8]). Let R : X 7→ PY and S : Y 7→ PZ. Then

1. R ∗ S = ν(R) ∗ S ∪ τ(R),

2. τ(R ∗ S) = τ(R) ∪ ν(R) ∗ τ(S),
3. τ(ν(R)) = ∅ = ν(τ(R)).

For inner univalent multirelations, the above decomposition properties simplify. Intuitively, the
non-terminal part of an inner univalent multirelation is inner deterministic: those elements that
are not related to the empty set must be related to a singleton set. Inner univalent multirelations
can thus be decomposed into an inner deterministic and a terminal part. Proving this fact in our
relational language requires a few simple properties.

Lemma 5.2. Let R : X 7→ PY . Then

1. α(τ(R)) = ∅ and α(ν(R)) = α(R),

2. ν(δi(R)) = δi(R) = δi(ν(R)) and τ(δi(R)) = ∅.

Proof. For (1), α(τ(R)) = Rα(∅∗) = Rα(∅∗)α(∅) = Rα(∅∗)∅ = ∅ using Lemma 4.5(1). The second
property follows from R = ν(R) ∪ τ(R). Both properties in (2) are obvious.

Lemma 5.3. Let R : X 7→ PY . Then the following statements are equivalent:

1. R is inner univalent,

2. ν(R) is inner deterministic,

3. ν(R) = δi(R).

Proof. If R is inner univalent, that is, R ⊆ 1⋓ ∪ A⋓, then ν(R) = R − 1⋓ ⊆ A⋓, thus ν(R) =
ν(R) ∩ A⋓ and (2) holds. In this case, ν(R) is a fixpoint of δi by Corollary 4.2 and (3) follows
immediately by Lemma 5.2(2). Thus R−1⋓ = R↓∩A⋓ by Lemma 4.4 and therefore R ⊆ A⋓∪1⋓,
which implies (1).

We can therefore rewrite R = (δi(R), τ(R)) as expected. Based on this we now show that the
Peleg composition of inner univalent multirelations can be represented as a generalisation of the
standard semidirect product of two monoids, where the first monoid is replaced by the category
IDRel and the second by the partial monoid of the terminal multirelations under unions and with
the empty multirelations as units. The units of this generalised semidirect product are the pairs
(1, ∅) and it remains to consider the multiplication.

A stepping stone is the following lemma, which generalises parts of Lemma 3.5 and Corollary 4.1
from inner determinism to inner univalence, and is thus of independent interest.

Lemma 5.4. Let R : X 7→ PY be inner univalent and S : Y 7→ PZ. Then α(R ∗ S) = α(R)α(S)
and δi(R ∗ S) = δi(R) ∗ δi(S).

Proof. Lemmas 5.1, 5.3(3) and 4.8(1) imply that R ∗S = α(R)S ∪ τ(R) if R is inner univalent. So
α(R ∗ S) = α(α(R)S ∪ τ(R)) = α(α(R)S) ∪ α(τ(R)) = α(R)α(S) by Lemma 5.2(1). The second
identity is then immediate from Lemma 3.5.

Proposition 5.5. Let R : X 7→ PY and S : Y 7→ PZ be inner univalent. Then

R ∗ S = (δi(R) ∗ δi(S), δi(R) ∗ τ(S) ∪ τ(R)) .

Proof. To establish the universal property of the coproduct it suffices to check that

δi(R) ∗ δi(S) = ν(R ∗ S) and δi(R) ∗ τ(S) ∪ τ(R) = τ(R ∗ S).

First, R ∗ S = α(R)S ∪ τ(R) = α(R)δi(S) ∪ α(R)τ(S) ∪ τ(R) = δi(R) ∗ δi(S) ∪ τ(R ∗ S) using
Lemmas 5.1(1), 5.3(3), 4.8(1) and 5.1(2). Thus, ν(R ∗ S) = ν(δi(R) ∗ δi(S)) = δi(R) ∗ δi(S), using
the definition of ν and Lemmas 5.1(3), 5.4 and 5.2(2). The second property is immediate from
Lemmas 5.1(2) and 5.3(3).
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The product in Proposition 5.5 has precisely the shape of the multiplication of a semidirect
product. The main result of this section is now straightforward.

Proposition 5.6. The inner univalent multirelations form a category with respect to Peleg com-
position and the 1X .

Proof. The universal property of the coproduct in Proposition 5.5 and Lemma 5.4 guarantee that
Peleg composition preserves inner univalence (ν(R ∗ S) = δi(R ∗ S) whenever R, S are inner
univalent); the 1X are clearly inner univalent. Associativity of Peleg composition (for composable
inner univalent multirelations) is routine: its proof is that of the standard semidirect product
construction of monoids, plus some type checking.

We call this category IURel. We have thus characterised the categories of inner and outer
deterministic multirelations, IDRel and DRel, as well as those of inner and outer univalent
multirelations IURel and URel, within our multirelational language. While the results for outer
deterministic and univalent multirelations were known, our proofs present new structural insights.
The results for their inner counterparts are new.

Remark 5.7. For an explicit proof of associativity of the τ -component of Peleg composition,
suppose R, S and T are inner univalent. Then, using Lemma 5.4 and techniques from the proof
of Proposition 5.5,

τ(R ∗ (S ∗ T )) = τ(R) ∪ α(R)τ(S) ∪ α(R)α(S)τ(T )

= τ(R) ∪ α(R)τ(S) ∪ α(R ∗ S)τ(T )
= τ((R ∗ S) ∗ T ).

The proof for the ν-component is simply associativity of Peleg composition in IDRel.

Remark 5.8. The proof of ν(R∗S) = δi(R)∗δi(S) in Proposition 5.5 can be adapted to show that
ν(R∗S) = ν(R)∗ν(S) if R is inner univalent: ν(R∗S) = ν(α(R)S) = α(R)ν(S) = ν(R)∗ν(S). The
second equality holds since ν(QS) = Qν(S) for arbitrary Q, S by standard relational properties.

Lemma 5.9. Each homset in IURel forms a complete lattice. In this category, Peleg composition
preserves arbitrary sups in its first argument and non-empty sups in the second.

Proof. Inner univalent multirelations are closed under arbitrary unions by Lemma 5.3, as ν and
δi preserve arbitrary unions. This yields a complete lattice structure on homsets. As already
mentioned, Peleg composition preserves arbitrary unions in its first argument. Preservation in the
second argument, in the inner univalent case, holds for non-empty unions: if I ̸= ∅, then

R ∗
⋃
i∈I

Si =

(
α(R)

⋃
i∈I

Si

)
∪ τ(R) =

⋃
i∈I

(α(R)Si ∪ τ(R)) =
⋃
i∈I

R ∗ Si.

Example 5.10. Inner univalent multirelations do not form a quantaloid with respect to sups, that
is, Proposition 3.10 does not generalise beyond Lemma 5.9. For I = ∅ we have R ∗

⋃
i∈I Si = R ∗ ∅

and
⋃

i∈I(R ∗ Si) = ∅. But R ∗ ∅ = ∅ if and only if τ(R) = ∅, that is, R must be inner total. This
shows that R must be inner deterministic for this argument to work.

Likewise, outer univalent multirelations do not form quantaloids with respect to ⋓. A coun-
terexample again uses I = ∅ in which case ∅ ∗⋓i∈ISi = ∅ but⋓i∈I(∅ ∗ Si) = 1⋓.

Remark 5.11. In light of Lemmas 5.2 and 5.4 one might wonder whether similar properties hold
for δo. Indeed, δo(ν(R)) = δo(R) for all R and δo(R ∗ S) = δo(R) ∗ δo(S) for inner univalent R
hold, but ν(δo(∅)) = ν(1⋓) = ∅ ≠ 1⋓ = δo(∅) because δo adds a pair (a, ∅) for each a that is not
related to any set.
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Example 5.12. Lemma 5.4, Proposition 5.6 and the previous remark show that α, δi and δo are
functors of type IURel → Rel, IURel → IDRel and IURel → DRel, respectively. They need
not be injective. For X = {a, b}, for instance, α maps the inner univalent multirelations {(a, ∅)}
and {(a, ∅), (b, ∅)} in X → PY to the relation ∅X,Y . This failure of injectivity extends along Λ
and η, so that the categories are not isomorphic.

6. A Fine-Grained View on Determinisation

Many properties of inner deterministic multirelations hold already for inner univalent ones.
Here we prove refined results. First we refine Corollary 4.2 for outer deterministic multirelations.

Lemma 6.1.

1. The outer univalent multirelations are precisely the postfixpoints of δo with respect to ⊆ and
the prefixpoints of δo with respect to ⊑↑.

2. Prefixpoints of δo with respect to ⊆ and ⊑↓ and postfixpoints with respect to ⊑↑ are outer
total. The postfixpoints of δo with respect to ⊑↕ and ⊑↑ coincide.

3. Prefixpoints of δo with respect to ⊑↕ are outer deterministic.

Proof. For (1), if R is outer univalent, then

R = R(∈ ÷ ∈) = (∈R⌣ ÷ ∈) ∩RU ⊆ ∈R⌣ ÷ ∈ = Λ(α(R)) = δo(R).

Conversely, if R is a postfixpoint of δo with respect to ⊆, then

R⌣R ⊆ δo(R)⌣δo(R) = Λ(α(R))⌣Λ(α(R)) = (∈ ÷ ∈R⌣)(∈R⌣ ÷ ∈) ⊆ ∈÷ ∈ = Id .

Since δo(R) ⊆ δo(R)↑, postfixpoints of δo with respect to ⊆ are also prefixpoints with respect to
⊑↑. Conversely, if R is a prefixpoint with respect to ⊑↑, then

R ⊆ δo(R)↑ = Λ(α(R))Ω = Λ(α(R))(∈\∈) = ∈Λ(α(R))⌣\∈ = ∈(∈ ÷ ∈R⌣)\∈ = ∈R⌣\∈.

Together with R ⊆ α(R)/∋, we obtain R ⊆ ∈R⌣÷∈ = Λ(α(R)) = δo(R). Thus R is a postfixpoint
with respect to ⊆.

For (2), if R is a postfixpoint of δo with respect to ⊑↑, then δo(R) ⊆ R↑. Hence outer totality
of R follows by U = Λ(α(R))U = δo(R)U ⊆ R↑U = RΩU = RU using that Λ yields outer
deterministic multirelations and Ω is outer total. The proof for prefixpoints with respect to ⊑↓
is similar, using Ω⌣ instead of Ω. Moreover prefixpoints with respect to ⊆ are also postfixpoints
with respect to ⊑↑ since R ⊆ R↑. The remaining claim follows since any R is a postfixpoint of δo
with respect to ⊑↓ (Proposition 4.3).

Finally, (3) follows by (1) and (2).

Obviously, if R is outer deterministic, then δo(R) = Λ(α(R)) = R. The converse implica-
tion follows by (3) above. This yields an alternative algebraic proof of the fact that the outer
deterministic multirelations are precisely the fixpoints of δo.

Next we refine Corollary 4.2 for inner deterministic multirelations.

Lemma 6.2.

1. Inner univalent multirelations are prefixpoints of δi with respect to ⊆ and postfixpoints of δi
with respect to ⊑↑.

2. Postfixpoints of δi with respect to ⊑↓ are inner univalent. The postfixpoints of δi with respect
to ⊑↕ and ⊑↓ coincide.

3. The inner total multirelations are precisely the prefixpoints of δi with respect to ⊑↑. The
prefixpoints of δi with respect to ⊑↕ and ⊑↑ coincide.

4. Postfixpoints of δi with respect to ⊆ are inner deterministic.
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Proof. (1) follows by Lemma 5.3, using δi(R) ⊆ R ⊆ R↑.
For (2), if R is a postfixpoint of δi with respect to ⊑↓, then R ⊆ δi(R)↓ ⊆ A⋓↓ = 1⋓ ∪ A⋓, so

R is inner univalent. Hence by (1), R is also a postfixpoint with respect to ⊑↑ and therefore with
respect to ⊑↕.

For (3), if R is a prefixpoint of δi with respect to ⊑↑, then R ⊆ δi(R)↑ ⊆ A⋓↑ = −1⋓, so R is
inner total. Conversely, if R is inner total, then

R ⊆ RR⌣R ⊆ R(−1⋓)
⌣(−1⋓) = R∋∈ = R∋1Ω = δi(R)Ω = δi(R)↑.

The claim follows since any R is a prefixpoint of δi with respect to ⊑↓ by Proposition 4.3.
For (4), since δi(R) ⊆ δi(R)↓ and δi(R) ⊆ δi(R)↑, postfixpoints of δi with respect to ⊆ are

also postfixpoints with respect to ⊑↓ and prefixpoints with respect to ⊑↑. Hence the final claim
follows by (2) and (3).

To show that the inner deterministic multirelations are precisely the fixpoints of δi, it remains
to check, using parts (1) and (4) above, that inner deterministic multirelations are postfixpoints
of δi with respect to ⊆. Indeed, if R is inner deterministic, then R ⊆ A⋓ = U1. Hence

R = R ∩ U1 ⊆ R1⌣1 ⊆ R∋1 = δi(R)

using 1 ⊆ ∈.
The following results revisit previous closure results in the context of total multirelations.

Lemma 6.3. Inner and outer total multirelations are closed under Peleg composition.

Proof. Let R and S be outer total. Then

S∗ = dom(S)∗
⋃

Q⊆dS

QP = 1∗
⋃

Q⊆dS

QP =
⋃

Q⊆dS

(∈Q∈ ÷ ∈).

Hence

S∗S
⌣
∗ =

⋃
P,Q⊆dS

(∈P∈ ÷ ∈)(∈ ÷ ∈Q∈) =
⋃

P,Q⊆dS

(∈P∈ ÷ ∈Q∈) ⊇
⋃

P⊆dS

(∈P∈ ÷ ∈P∈) ⊇ Id .

Thus (R ∗ S)(R ∗ S)⌣ = RS∗S
⌣
∗ R⌣ ⊇ RR⌣ ⊇ Id .

Let R and S be inner total, that is, R ⊆ −1⋓ and S ⊆ −1⋓. Since Peleg composition preserves
⊆ it suffices to show −1⋓ ∗ −1⋓ ⊆ −1⋓. We have

−1⋓ ∗ −1⋓ = −1⋓(−1⋓)∗ = −1⋓dom(−1⋓)∗
⋃

Q⊆d−1⋓

QP = −1⋓
⋃

Q⊆d−1⋓

QP =
⋃

Q⊆d−1⋓

−1⋓QP .

Hence it remains to show −1⋓QP ⊆ −1⋓ for any Q ⊆d −1⋓. The latter condition means Q is
outer univalent, outer total and inner total. The remaining goal is equivalent to 1⋓(QP)

⌣ ⊆ 1⋓.
This follows by

1⋓(QP)
⌣ = 1⋓Λ(∋Q∋)⌣

= 1⋓(∈ ÷ ∈Q⌣∈)
= (∈1⋓⌣ ÷ ∈Q⌣∈)
= (∅ ÷ ∈Q⌣∈)
= ∅/∋Q∋
= −(U∈Q⌣∈)
= −(U(−1⋓Q

⌣∈))
⊆ −(UQQ⌣∈)
⊆ −(U∈)
= 1⋓

using that Q is inner and outer total.
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Hence closure of inner deterministic multirelations under Peleg composition (Proposition 3.6)
also follows by combining Proposition 5.6 and Lemma 6.3. However, composition of outer total
multirelations or inner total multirelations, respectively, need not be associative.

Example 6.4. Let X = {a, b} and R,S : X 7→ PX with R = {(a, {a, b}), (b, {a, b})} and S =
{(a, ∅), (b, {a}), (b, {b})}. Then (a, {a, b}) ∈ R ∗ (R ∗ S) − (R ∗ R) ∗ S. The same holds for
R = {(a, {a}), (a, {a, b}), (b, {a})} and S = {(a, {a}), (a, {b})}. Thus neither outer nor inner total
multirelations form categories.

We conclude with preservation properties for outer total multirelations.

Lemma 6.5. Let R : X 7→ PY and S : Y 7→ PZ be outer total. Then

1. α(R ∗ S) = α(R)α(S),

2. δi(R ∗ S) = δi(R) ∗ δi(S) and δo(R ∗ S) = δo(R) ∗ δo(S).

Proof. For (1), if S is outer total, then dom(S) = Id and α(S∗) = α(Id)α(S) by Lemma 4.5(1).
The inclusion step in the proof of Lemma 4.5(2) then becomes an equality, which shows the claim.
Item (2) is then immediate from (1) and Lemma 3.5.

Example 6.6. Part (1) of Lemma 6.5 does not hold for outer univalent multirelations: we have
α(1 ∗ ∅) = α(1) = Id but α(1)α(∅) = Id ∅ = ∅. For (2) consider X = {a, b} and R,S : X 7→ PX
with R = {(a, {a, b})} and S = {(a, {a})}. Then δi(R ∗ S) = δi(∅) = ∅ but

δi(R) ∗ δi(S) = {(a, {a}), (a, {b})} ∗ S = {(a, {a})}.

Moreover δo(R ∗ S) = δo(∅) = {(a, ∅), (b, ∅)} but

δo(R) ∗ δo(S) = (R ∪ {(b, ∅)}) ∗ (S ∪ {(b, ∅)}) = {(a, {a}), (b, ∅)}.

7. Co-Determinisation and Further Isomorphisms

We discuss two additional operations called co-fusion and co-fission of multirelations. They
are obtained via the inner isomorphism:

δ̃o(R) = ∼δo(∼R) and δ̃i(R) = ∼δi(∼R).

It follows that

δ̃o(R) =
{
(a,B) | B =

⋂
R(a)

}
and δ̃i(R) = R↑ ∩ A⋒.

Other properties of co-fusion and co-fission follow immediately from the inner isomorphism. For
instance,

δ̃o(R) = −(−R↑ ∩ A⋒)↓ ∩ −(∼R↑ ∩ A⋓)↑

and similar to property (1) of Proposition 4.3 there is a Galois connection with respect to ⊑↑. See
our Isabelle theories for details [10].

In Section 4 we have used isomorphisms to represent α(R) as outer and inner deterministic
multirelations δo(R) and δi(R). We now discuss further isomorphic representations. Since outer
deterministic multirelations are isomorphic to their down-closures, we obtain the down-closed rep-
resentation δ↓(R) = δo(R)↓. Application of fusion takes us back according to δo(R) = δo(δ↓(R)).
Moreover, fission is now obtained by δi(R) = δ↓(R) ∩ A⋓. Hence the down-closed representation
contains both the fusion and the fission. Finally, (R ∗ S)↓ = R ∗ S↓ = R ∗ (1⋓ ∪ S↓) = R↓ ∗ S↓
for outer deterministic S and (−)↓ preserves arbitrary inner unions of outer deterministic mul-
tirelations. Hence we obtain an isomorphism between the quantaloid of outer deterministic mul-
tirelations with⋓ and the quantaloid of down-closures of outer deterministic multirelations with

⋓.
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Outer deterministic multirelations are also isomorphic to their up-closures, so we obtain the
up-closed representation δ↑(R) = δo(R)↑. To get back we apply co-fusion: δo(R) = δ̃o(δ↑(R)).

Furthermore, co-fission is obtained by δ̃i(R) = δ↑(R) ∩ A⋒. Hence the up-closed representation
contains both the fusion and the co-fission. By [5, Example 4.9], up-closure does not distribute over
Peleg composition for outer deterministic multirelations, so there is no quantaloid isomorphism
in this case. Nevertheless, since (−)↑ preserves arbitrary inner unions of outer deterministic
multirelations, we obtain complete lattice isomorphisms between outer deterministic multirelations
and their up-closures.

The range of δ̃o(−) equals that of δo, namely the outer deterministic multirelations. Hence
similar results are obtained by starting from δ̃o(R) instead of δo(R) and considering down-/up-
closed representations. From the range of δi it is also possible to apply ↓ or ↑ and then go back
by δi or intersection with A⋓. A similar construction applies to the range of δ̃i(−). Note that
(R ∗ S)↑ = R↑∗S↑ for inner deterministic R [5, Lemma 4.8] and (−)↑ preserves arbitrary unions of
inner deterministic multirelations [5, Lemma 4.3]. Hence we obtain an isomorphism between the
quantaloid of inner deterministic multirelations with

⋃
and the quantaloid of up-closures of inner

deterministic multirelations with
⋃
. Example 4.10 in [5] rules out a corresponding result for the

down-closure of inner deterministic multirelations. However, since (−)↓ preserves arbitrary unions
of inner deterministic multirelations, at least we obtain complete lattice isomorphisms between
inner deterministic multirelations and their down-closures.

8. Conclusion

We have studied the inner structure of multirelations through the categories of outer and inner
univalent and deterministic multirelations and determinisation maps in a multirelational language
that combines features of relation algebra and power allegories with multirelational concepts.
These show that the power transpose of power allegories together with the maps that postcompose
with the converse membership relation and with the unit of the Peleg composition of multirelations,
as well as the maps projecting on the terminal part of a multirelation play important structural
roles in their study. Our results add to previous work on the various inner and outer operations
on multirelations [5], but shift the focus towards univalence and determinism and from a relation-
algebraic language to a language based on power allegories.

Another contribution of our work, only mentioned briefly in the introduction of this article, are
our Isabelle components for multirelations [10]. These contain a comprehensive study of the basic
laws for multirelations, including most of the concepts and results in this paper: from the inner
operations, closures and preorders, the Kleisli and Peleg lifting and Peleg composition, to relational
and multirelational properties of concrete power allegories (in Rel), the determinisation maps and
their properties, and beyond. The PDF proof document in the Archive of Formal Proofs contains
almost 200 pages. It thus constitutes at least a medium-size case study in formalised mathematics
and can be used and extended by anyone interested in formal reasoning with multirelations.

Our multirelational language and its formalisation with Isabelle has so far been based on
concrete relations and multirelations. An axiomatic extension of the abstract allegorical approach,
which equips boolean power allegories with a basis of multirelational operations, is the most natural
continuation of this work. This would extend Bird and de Moor’s algebra of programming [2] to
alternating nondeterminism. We expect that the results in our trilogy of articles and our Isabelle
components prepare the ground for this work. Isabelle can be particularly helpful with rapidly
prototyping axiom systems and checking the redundancy of axioms using deduction as well as their
irredundancy using counterexample search. The characterisation of intuitionistic variants of power
allegories based on locally complete allegories is another interesting question, or the consideration
of categories of multirelations in arbitrary Grothendieck topoi.

Computations with only demonic nondeterminism have been modelled using binary relations
[1]. These arise as a subclass of up-closed multirelations with Parikh composition [17]. Here,
multirelations are not required to be up-closed and we use Peleg composition instead of Parikh
composition, since the former has the right structural properties for our purposes. While outer
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deterministic multirelations represent purely demonic nondeterminism and inner union models
demonic choice, Peleg composition differs from demonic composition.

In computer science, nondeterminism and partiality are often modelled using monads. An
obvious alternative to the relational and allegorical approach in this work is therefore the trans-
lation of multirelations in Rel into doubly nondeterministic functions in Set and the application
of the standard monadic machinery in Set. While this approach may be accessible to a wider
range of readers, its structural complexity might be similar to that of power allegories and relation
algebras, where relations and their algebras have been studied traditionally. In fact, the notions
from power allegories and multirelations used here align very naturally with the structure studied.
An exploration of the monadic approach and its comparison with the relation-algebraic one is
nevertheless an interesting avenue for future work.

Last but not least, the approximation maps α, δo and δi are important for defining modal op-
erators on multirelations, which arise in concurrent dynamic logic following Peleg [15] and Nerode
and Wijesekera [12]. In fact, an algebraic formalisation of such operators in our multirelational
language has been a starting point of this line of work. This is explored in the third part of this
trilogy [4] and constitutes the main application of our results so far.

Acknowledgement. Hitoshi Furusawa and Walter Guttmann thank the Japan Society for the Pro-
motion of Science for supporting part of this research through a JSPS Invitational Fellowship for
Research in Japan. Georg Struth would like to thank Yasuo Kawahara for discussions on the al-
legorical approach to binary relations and his hospitality during several research visits at Kyushu
University.

References

[1] Backhouse, R.C., van der Woude, J., 1993. Demonic operators and monotype factors. Mathematical Structures
in Computer Science 3, 417–433.

[2] Bird, R., de Moor, O., 1997. Algebra of Programming. Prentice Hall.
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Appendix A. Basis

As in [5], almost every operation in this article can be defined in terms of a basis of 6 operations
that mix the relational and the multirelational language: the relational operations −, ∩, / and
the multirelational operations 1, ⋓, ∗. Here we extend the list from [5] with definitions of the
operations from power allegories.

� R ∪ S = −(−R ∩ −S)

� R− S = R ∩ −S

� ∅ = R ∩ −R

� U = −∅

� R↑ = R ⋓ U

� ∈ = 1↑

� Id = 1/1

� R⌣ = −(−Id/R)

� SR = −(−S/R⌣)

� ∋ = ∈⌣

� R\S = (S⌣/R⌣)⌣

� R÷ S = (R\S) ∩ (R⌣/S⌣)

� Λ(R) = R⌣ ÷ ∈

� P(R) = Λ(∋R)

� RP = P(R∋)

� µ = IdP

� Ω = ∈\∈

� C = ∈ ÷− ∈

� ∼R = RC

� R ⋒ S = ∼(∼R ⋓∼S)

� R↓ = X ⋒ U

� R↕ = R↑ ∩R↓

� 1⋓ = 1 ⋒∼1

� 1⋒ = ∼1⋓

� Rd = −∼R

� R⊙ S = ∼(R ∗ ∼S)

� R∗ = (Λ(∋1) ∗ 1⌣R1)µ

� A⋓ = U1

� A⋒ = ∼A⋓

� ν(R) = R− 1⋓

� τ(R) = R ∩ 1⋓

� α(R) = R∋

� δi(R) = R↓ ∩ A⋓

� δo(R) = 1RP

� δ̃i(R) = R↑ ∩ A⋒

� δ̃o(R) = ∼δo(∼R)

� dom(R) = Id ∩RR⌣

� R ⊑↑ S ⇔ S ⊆ R↑

� R ⊑↓ S ⇔ R ⊆ S↓

� R ⊑↕ S ⇔ R ⊑↓ S∧R ⊑↑ S

We could replace relational intersection ∩ with a multirelational intersection variant ∩ in
the basis: relational ∩ is obtained by R ∩ S = α(R1 ∩ S1) which can be defined in terms of
multirelational ∩ and the rest of the basis. Yet we do not know whether a multirelational − could
replace the relational variant. See the comments on the list in [5] for further information.
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