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Abstract

We investigate various fixpoint operators in a semiring-based setting that models a general correctness
semantics of programs. They arise as combinations of least/greatest (pre/post)fixpoints with respect to
refinement/approximation. In particular, we show isotony of these operators and give representations of
fixpoints in terms of other fixpoints. Some results require completeness of the Egli-Milner order, for which
we provide conditions.

A new perspective is reached by exchanging the semirings with distributive lattices. They can be aug-
mented in a natural way with a second order that is similar to the Egli-Milner order. We extend our discussion
of fixpoint operators to this induced order. We show the impact on general correctness by connecting the
lattice- and the semiring-based treatments to obtain results about the Egli-Milner order.

Keywords: distributive lattice, Egli-Milner order, fixpoint, general correctness, median, program
semantics, recursion, semiring

1. Introduction

For providing a semantics of non-deterministic sequential programs there are different ways to represent
terminating and non-terminating executions that start in the same state. In such a case, partial correct-
ness ignores the non-terminating executions and total correctness ignores the terminating ones. General
correctness [26] is finer by independently keeping terminating and non-terminating executions. The price
for this precision is a more complex approximation order, the Egli-Milner order, to give a fixpoint semantics
of recursion. Partial and total correctness just reuse the refinement order, respectively, its converse.

Recent progress in the algebraic treatment of general correctness is facilitated by expressing the Egli-
Milner approximation order in terms of the refinement order, and least fixpoints with respect to Egli-Milner
in terms of least and greatest fixpoints with respect to refinement [23, 24, 25]. This overcomes the complexity
of the Egli-Milner order by reducing calculations to the simpler refinement order. The algebraic structures
underlying these developments are variants of semirings and distributive lattices.

To calculate with fixpoints or to show their existence it is typical to assume that functions are isotone,
although occasionally this proviso is not available as in [4, 5, 13, 7]. We have therefore shown that also in
our algebraic setting basic programming constructs such as sequential composition, non-deterministic choice
and while-loops are isotone with respect to the Egli-Milner order. The first goal of the present paper is to
extend this result to full recursion.

This means that we need to show isotony of the fixpoint operator which gives the solution to a recursion.
Unlike in partial and total correctness, we must care for two orders in general correctness: approximation
and refinement. With either order, isotony of the fixpoint operator is needed to show isotony of functions
describing nested recursions. Additionally, isotony of the fixpoint operator with respect to the refinement
order is needed for refinements carried out within the body of a recursion. The situation is complicated
further because the Egli-Milner fixpoint is expressed in terms of the two refinement fixpoints.

As a consequence, we investigate all three fixpoint operators mentioned above, each with respect to both
the Egli-Milner and the refinement order. In particular, we show that the operator, which maps an isotone
function to its Egli-Milner least fixpoint, is itself isotone with respect to the lifted Egli-Milner order. This
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is necessary since general isotony results for fixpoint operators, such as [9, Rule 8.28], only apply to least
prefixpoints, but our treatment just yields least fixpoints. We therefore give conditions under which the
Egli-Milner order is complete, whence prefixpoints exist and coincide with fixpoints.

For many results, however, it is possible to avoid completeness, and thereby profit from the support
by automated theorem provers such as Prover9. Since in the absence of completeness fixpoints and prefix-
points have quite different properties, we maintain this distinction throughout this paper, and similarly for
postfixpoints in the dual case.

In addition to isotony of a fixpoint operator, we are interested in the location of the resulting fixpoints
in the ‘other’ order. This issue arises, for example, in proving correctness of loop introduction rules [23] or
of the unfold-fold method, as we do in the present paper. Moreover the case of Egli-Milner least fixpoints,
which are derived from refinement fixpoints, shows that operators of one order can be combined to yield
useful operators of the other order.

Insight into the relations between both orders is gained by turning to a variant of the Egli-Milner order
that is intimately related to the refinement order; the background is as follows. Sets with two orders have
been considered in the context of logic programming [20, 18] and domain theory [27, 28], under the name of
bilattices and bitopologies, respectively. The two orders represent the information structure and the logical
structure. The second goal of the present paper is to establish the connection of these works to general
correctness.

To this end, we switch from the semiring-based setting to distributive lattices. As recalled by [27, 28],
the median operation induces a second order in the lattice [3]; call it the ‘cross’ order. We investigate least
(pre)fixpoints and greatest (post)fixpoints with respect to the cross order. In particular, we give conditions
for their existence and represent them by (pre/post)fixpoints with respect to the original lattice order. The
link to general correctness is provided as in [7], namely by showing that the cross order is a superset of the
Egli-Milner order. This allows us to transfer a number of results, for example, about fixpoints, from the
cross order to the Egli-Milner order, which is useful because the cross order is less complex.

In Section 2 we review a model of general correctness in which programs are represented by matrices over
relations. We show the effect of program operations and several constructions, which are used throughout
subsequent sections, in this particular instance. Because this model satisfies the axioms underlying the
remainder of this paper, all results obtained there apply to general correctness.

Section 3 works in the semiring setting of [23, 24]. New results include the correctness of the unfold-fold
method, another representation of Egli-Milner least fixpoints, isotony of (pre/post)fixpoint operators and
conditions for completeness of the approximation order. We conclude with several properties of the Kleene
star and omega operations with respect to the Egli-Milner order.

Section 4 works in distributive lattices. Some new results concern least (pre)fixpoints in the cross order:
conditions for their existence, weaker isotony assumptions and more general representations. We also show
isotony of (pre/post)fixpoint operators and conclude with greatest (post)fixpoints in the cross order.

The link between semirings and lattices is drawn in Section 5. We show algebraically that the Egli-Milner
order is a subset of the cross order and exemplify the transfer of results between the two.

Related work is pointed out throughout the paper and discussed in the final section, which refers and
translates to concrete models found in the literature.

2. Matrix Representation of General Correctness

To motivate the algebraic treatment carried out in subsequent sections, we discuss a particular model of
general correctness. It is based on the ‘prescriptions’ of [14] and represents programs by 2× 2 matrices. For
the present purpose we assume that the entries of the matrices are relations, that is, subsets of R =def Q×Q
for a fixed base set Q; see [32, 23] for weaker settings. Denote by +, f and the union, intersection and
complement operations; by ≤ the subset relation; by · relational composition; by 0, 1 and > the empty,
identity and universal relations, respectively. The composition x · y is abbreviated by xy.

In program semantics, Q is the state space given by the possible values of variables, R is the set of
programs or specifications, + models non-deterministic choice, ≤ refinement, · sequential composition and
1 the program with no effect on the state.
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In general correctness it is necessary to represent non-terminating and terminating executions of a pro-
gram independently. This is achieved by prescriptions. A prescription is a 2× 2 matrix(

> 0
w x

)
∈ R2×2

such that w = w>. Elements of the form w>, called vectors in [36], model subsets of Q or conditions on
the state space; they are closed under the operations +, f, and x· for each x ∈ R.

The entry w of a prescription captures the set of states from which non-terminating executions exist.
The entry x holds the state transitions caused by terminating executions. The entries in the top row are
fixed so that sequential composition of prescriptions works appropriately for general correctness.

Let S be the set of all prescriptions. A number of special prescriptions known from [35, 13] are:

fail =
(
> 0
0 0

)
loop =

(
> 0
> 0

)
havoc =

(
> 0
0 >

)
chaos =

(
> 0
> >

)
skip =

(
> 0
0 1

)
For instance, loop is the program that does not terminate: the vector > in its bottom-left entry states that
there is a non-terminating execution from each state, while 0 at the bottom-right states that there are no
terminating executions. Similarly, havoc is the program that terminates but has an arbitrary effect on the
state, and skip is the program that terminates without changing the state.

Operations on the prescriptions S are obtained by lifting from the underlying set R. In particular, +
and f are applied componentwise, and · is given by the matrix product:(

> 0
w x

)
+

(
> 0
y z

)
=

(
> 0

w + y x+ z

) (
> 0
w x

)
·
(
> 0
y z

)
=

(
> 0

w + xy xz

)
Intuitively, the non-terminating executions w+xy of a sequential composition mean the following: either the
first program does not terminate because it starts from a state in w, or the first program takes a transition
x to reach a state in y, from where the second program does not terminate. The terminating executions xz
are obtained by composing the terminating executions x and z of both programs.

The elements fail, skip and chaos of S take the places of 0, 1 and > for the lifted operations. This way,
we obtain an algebraic structure for S which is similar to the underlying relational structure of R. However,
some differences remain: for example, x · 0 = 0 holds for each x ∈ R, but the lifted y · fail = fail is not true
for all y ∈ S as witnessed by y = loop or y = chaos. This shows that relations and prescriptions represent
different models of computations: relations are adequate for partial correctness, prescriptions are adequate
for general correctness.

Nevertheless the algebraic structure of prescriptions is rich. In particular, S forms a bounded distributive
lattice and a semiring without the right zero law mentioned above, and S has a Kleene star, an omega and
an antidomain operation. The axioms of these structures are given in Sections 3 and 4; the point here is
that prescriptions satisfy all those axioms, whence the results established in this paper in particular apply
to prescriptions.

The lifted operations +, f and · model non-deterministic choice, conjunction and sequential composition
of programs. The Kleene star models finite iteration, the omega models infinite iteration and the antidomain
models the set of states without outgoing transitions. On prescriptions they are obtained by lifting as follows:(

> 0
w x

)∗
=

(
> 0
x∗w x∗

) (
> 0
w x

)
ω

=
(

> 0
xω + x∗w xω

)
a

(
> 0
w x

)
=

(
> 0
0 a(w + x)

)
Intuitively, x∗w represents those states from which after finitely many executions of x a state in w is reached,
from where a non-terminating execution exists; xω is a vector representing the states from which x can be
executed infinitely often; in relational terms a(w + x) = (w + x) · > f 1 holds, which represents the set of
states from which neither non-terminating nor terminating executions exist.

Further structure is available through the prescriptions loop and havoc. They have no counterparts in
the underlying set R, and therefore are represented by elements L and H with additional axioms in the
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upcoming sections. For instance, prescriptions satisfy chaos · fail = loop or, abstractly, > · 0 = L. Using
the domain operation d(x) = a(a(x)), another law is d(loop) = skip or, abstractly, d(L) = 1. Yet another
property is that loop and havoc are complements, that is, Lf H = 0 and L + H = >.

It is frequently helpful to decompose a prescription into its finite and infinite executions. In a semiring-
based setting such as that of Section 3, the infinite executions are obtained by sequentially composing with
fail. Subsequent application of domain brings this information to the bottom-right entry where it can act
as a restriction in sequential compositions:(

> 0
w x

)
·
(
> 0
0 0

)
=

(
> 0
w 0

)
d

(
> 0
w 0

)
=

(
> 0
0 d(w)

)
Abstractly, this is achieved by y0 and d(y0) for an element y ∈ S. We have the law d(y0)L = y0 for
prescriptions, which serves as another axiom in the abstract setting. This construction is also used for
representing the Egli-Milner order on prescriptions [35, 34, 17], namely(

> 0
w x

)
v

(
> 0
y z

)
⇔ y ≤ w ∧ x ≤ z ≤ w + x .

Intuitively, we may remove non-terminating executions by y ≤ w and add terminating executions by x ≤ z
provided there are non-terminating executions, that is, z ≤ w+x. Precisely this is achieved by the abstract
representation of the Egli-Milner order given in Section 3. Least fixpoints with respect to this order are
taken as the semantics of recursive programs.

For prescriptions we have xf L = x0 as an alternative way to obtain the infinite executions, suitable for
a lattice-based setting. The finite executions are similarly obtained by xf H:(

> 0
w x

)
f

(
> 0
0 >

)
=

(
> 0
0 x

)
.

The same effect cannot be achieved using the operations +, · and a only, but additional axioms are necessary
in a semiring-based setting.

In the lattice-based setting of Section 4 we are moreover concerned with the following operations, which
mix the effects of + and f and appear in [13, 15]:(

> 0
w x

)
u

(
> 0
y z

)
=

(
> 0

w + y xf z

) (
> 0
w x

)
t

(
> 0
y z

)
=

(
> 0

w f y x+ z

)
They are abstractly represented by xuy = (Lfx) + (xfy) + (yfL) and xty = (Hfx) + (xfy) + (yfH),
two instances of the median operation which we discuss there. Furthermore, they induce the order(

> 0
w x

)
v

(
> 0
y z

)
⇔ y ≤ w ∧ x ≤ z ,

which is a superset of the Egli-Milner order [13, 7].
The development in the remainder of this paper abstracts from prescriptions as matrices to their algebraic

structure. We do this to obtain a more general treatment, to exhibit their structure more clearly and to
avoid unnecessary details which tend to obscure connections. Although the development is abstract, based
on few axioms rather than rich models, the results apply to prescriptions and related general correctness
models of programs [26, 35, 13, 14, 7, 34].

3. Fixpoints in Semirings

To investigate the isotony of fixpoint operators we abstract from the model discussed in Section 2.
Programs are represented by elements of a bounded antidomain semiring (S,+, 0, ·, 1, a,>) without the
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right zero law. The axioms are based on [33, 11, 12]:

x+ 0 = x 1 · x = x 0 · x = 0
x+ x = x x · 1 = x
x+ y = y + x x · (y · z) = (x · y) · z a(x) · x = 0

x+ (y + z) = (x+ y) + z x · (y + z) = (x · y) + (x · z) a2(x) + a(x) = 1
x+> = > (x+ y) · z = (x · z) + (y · z) a(x · a2(y)) = a(x · y)

We obtain the natural order x ≤ y ⇔def x+ y = y and the domain operation d(x) =def a
2(x) based on the

antidomain a. The elements 0 and > are the least and greatest ones with respect to the natural order. The
operations +, · and d are ≤-isotone, while a is ≤-antitone. The operation + has lower precedence than ·
which is again omitted by writing xy instead of x · y.

In program semantics the operation + represents non-deterministic choice and · sequential composition.
The element 1 models the program skip which has no effect on the state, 0 models the program fail which has
no transitions, and > models the program chaos which may perform anything. The domain d(x) describes
the set of states from which transitions under x are possible, the antidomain a(x) those states from which
no transitions under x exist.

It follows from the above axioms that the operation d is idempotent, whence the domain elements
d(S) = {d(x) | x ∈ S} are the fixpoints of d. They form a Boolean algebra (d(S),+, 0, ·, 1, a) with join +,
meet · and complement a. Every domain element is ≤ 1 and models a set of states; intuitively, the sequential
composition px of the domain element p ∈ d(S) with the program x ∈ S restricts the transitions of x to
those that start in the set p. Particular consequences about the domain operation are:

d(x)x = x d(x+ y) = d(x) + d(y) 1 = d(>) d(x) ≤ d(y) ⇔ x ≤ d(y)x
d(xd(y)) = d(xy) d(a(x)) = a(x) x ≤ d(x)> d(x)y = 0 ⇔ d(x)d(y) = 0
d(d(x)y) = d(x)d(y) a(d(x)) = a(x) xd(y)> ≤ d(xy)> d(x)y ≤ z ⇔ y ≤ z + a(x)>

In a bounded setting such as the one above the element L =def > · 0 exists. Observe that in general it
is not 0 because the right zero law is omitted from the axioms. In program semantics the operation (·0)
intuitively cuts away all terminating executions of a program. In particular, L represents the program loop
or the endless loop, whence we expect it to be the least element of the Egli-Milner order. To obtain this, we
assume the following axioms about L:

(L1) d(x0)L = x0
(L2) d(L) = 1

Intuitively, the axiom (L1) describes that the non-terminating executions of x are obtained by restricting
the endless loop to the states from where x does not terminate. The axiom (L2) states that the endless loop
L is total. We define the Egli-Milner order as in [24]:

x v y ⇔def x ≤ y + x0 ∧ y ≤ x+ d(x0)> .

As discussed in Section 2, this gives the expected approximation order when instantiated in models of general
correctness. An advantage of this definition over the previous one given in [23] is that it does not require
the element H, which we discuss later.

The need for the specific axioms about L is apparent from the following consequence [24, Theorem 1],
see also [23, Lemma 5].

Proposition 1. The relation v is a partial order if and only if (L1) holds. It has the least element L if and
only if (L2) holds. The operations + and · are v-isotone.

Using sequential composition and non-deterministic choice we obtain the conditional statement according
to if p then x else y = d(p)x+ a(p)y. Then the semantics of the while-loop while p do y is given as the least
fixpoint of the function λx.if p then yx else 1 with respect to the Egli-Milner order. It can be represented
using the Kleene star and omega operations, which are v-isotone, too. We defer the discussion of this
specific recursion to Section 3.6.
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In general, recursion is modelled by the equation x = f(x) using an arbitrary function f : S → S. In
this equation, f(x) represents the body of the recursive program, possibly containing recursive calls to the
program x being defined. For example, f(x) = d(p)yx+ a(p) characterises the while-loop described above.
The semantics of the recursion x = f(x) is the v-least fixpoint of the function f .

For the reasons explained in the introduction, we are interested in this and other fixpoints of f : the
v-least fixpoint ξf and the v-least prefixpoint ξ̂f , the ≤-least fixpoint µf and the ≤-least prefixpoint µ̂f ,
the ≤-greatest fixpoint νf and the ≤-greatest postfixpoint ν̂f . They are elements of S satisfying the following
properties:

f(ξf) = ξf f(x) = x ⇒ ξf v x f(ξ̂f) v ξ̂f f(x) v x ⇒ ξ̂f v x
f(µf) = µf f(x) = x ⇒ µf ≤ x f(µ̂f) ≤ µ̂f f(x) ≤ x ⇒ µ̂f ≤ x
f(νf) = νf f(x) = x ⇒ νf ≥ x f(ν̂f) ≥ ν̂f f(x) ≥ x ⇒ ν̂f ≥ x

If µf , νf and ξf exist, then clearly µf ≤ ξf ≤ νf . Another simple consequence is that the least prefixpoint
of an isotone function is the least fixpoint, and similarly for postfixpoints [10, Theorem 4.2]. The converse
implication, however, does not necessarily hold: the existence of the least fixpoint does not imply the
existence of the least prefixpoint, and similarly for postfixpoints. (A counterexample for partial orders is the
function λx.2x on the integer numbers ordered by ≤ having the least and unique fixpoint 0 and all negative
numbers as prefixpoints, hence no least prefixpoint.)

The following representation of the Egli-Milner least fixpoint ξf in terms of the ≤-least and ≤-greatest
fixpoints µf and νf is obtained in [24, Corollary 3], see also [23, Corollary 13]. Its proof does not need (L2).

Proposition 2. Let f : S → S be ≤- and v-isotone and assume that µf and νf exist. Then ξf exists if
and only if νf ≤ µf + d(νf0)> if and only if ξf = νf0 + µf .

A benefit of the representation is that it replaces calculations using the complex Egli-Milner order v,
necessary for the general correctness semantics, by calculations using the simpler refinement order ≤. For
example, Section 3.6 shows how to obtain the general correctness semantics of while-loops this way and
Section 3.1 applies it to show correctness of the unfold-fold method.

The existing proof of Proposition 2, however, does not yield the v-least prefixpoint ξ̂f even if µ̂f and
ν̂f exist. This is unfortunate, because sometimes prefixpoints are necessary, for example, to show that a
fixpoint operator is isotone. As remarked in the introduction, isotony of fixpoint operators is necessary for
dealing with nested recursions. The following result is available [9, Rule 8.28] and stated here in terms of
the order v. Orders such as v and ≤ are lifted to functions pointwise.

Proposition 3. Let f, g : S → S be such that f v g. If ξ̂f and ξ̂g exist, then ξ̂f v ξ̂g. If additionally f
and g are v-isotone, then ξf v ξg.

However, ξf v ξg cannot be obtained by assuming the existence of ξf and ξg only. (Continuing the
above counterexample, take λx.2x and λx.2x + 2 with the least fixpoints 0 and −2, respectively, despite
2x ≤ 2x + 2 for every integer number x.) This means we have to establish the existence of ξ̂f and ξ̂g.
By the following result [31, Theorem 9], it remains to show completeness with respect to the Egli-Milner
order. A partially ordered set is chain-complete if every chain (possibly empty, totally ordered subset) has
a supremum.

Proposition 4. Let f : S → S be v-isotone and assume that S is v-chain-complete. Then ξ̂f exists.

We give sufficient conditions in Section 3.4. Before that, we show that still many results about fixpoints
can be derived without resorting to completeness. We prefer to avoid completeness and stay first-order
whenever possible, because this enables the use of automated theorem provers such as Prover9. In particular,
we look at the unfold-fold method, give another representation of ξf and investigate isotony of the fixpoint
operators with respect to ≤ and of µ̂ with respect to v.
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3.1. Correctness of Unfold-Fold
As an example showing the usefulness of the representation granted by Proposition 2, we describe the

unfold-fold method [6], which can be used to develop recursive programs from specifications. We are con-
cerned with a generalisation given by [1] that allows the reduction of non-determinism in addition to meaning-
preserving transformations. Its essence is captured in our algebraic setting as follows:

1. Start with a specification x0 ∈ S.
2. Successively apply meaning-preserving or refining transformations (such as unfold and fold) to obtain a

sequence of specifications x0, x1, x2, . . . , xn ∈ S where each step maintains or reduces non-determinism,
that is, xi ≥ xi+1.

3. Reach a specification xn which is given in terms of the original x0, that is, xn = f(x0).
4. Turn it into the recursive program ξf .

In summary, we have f(x0) = xn ≤ xn−1 ≤ . . . ≤ x1 ≤ x0, whence x0 is a prefixpoint of f . This implies
µ̂f ≤ x0, hence the method is valid in partial correctness, where recursions are solved by ≤-least fixpoints.
The validity in general correctness, however, amounts to ξf ≤ x0, which states that the recursively defined
result ξf implements the original specification x0. It is not clear that this holds, since x0 is not necessarily
a fixpoint of f , and even if f(x0) = x0 held, we could only conclude ξf v x0.

A proof of the unfold-fold method in general correctness is given by [1] in a functional setting. We
algebraically state and prove their result. Validity of unfold-fold in total correctness is addressed by [22,
Theorem 4.5] in relation algebra.

Theorem 5. Let f : S → S be ≤- and v-isotone and assume that µ̂f , νf and ξf exist. Then

1. f(x) ≤ x⇒ ξf ≤ x+ L.
2. f(x) ≤ x ∧ ξf0 ≤ x0⇒ ξf ≤ x.

Proof. From f(x) ≤ x we obtain µ̂f ≤ x, whence µf = µ̂f ≤ x since f is ≤-isotone. Claim (1) follows by
ξf = νf0 +µf ≤ >0 +x = L+x using Proposition 2. By the same proposition, we have ξf0 = (νf0 +µf)0 =
νf0. Assuming ξf0 ≤ x0, we obtain claim (2) by ξf = νf0 + µf = ξf0 + µf ≤ x0 + x = x. �

Claim (1) corresponds to [1, Theorem 4.4] and claim (2) to [1, Corollary 4.5]; observe that our proof
needs no induction. Intuitively, ξf0 ≤ x0 states that whenever x terminates, so does ξf .

Note that the main correctness claim ξf ≤ x combines the natural order ≤ with the fixpoint ξf , which
is essentially defined in terms of the Egli-Milner order v. Another example for such a combination of the
two orders is the general correctness loop refinement rule [23, Theorem 11].

3.2. Representing Egli-Milner Fixpoints
We extend Proposition 2 by further equivalent conditions and a representation in terms of the meet in

the Egli-Milner order. More conditions and another representation can be added by additionally assuming
that (S,≤) is a distributive lattice [25], see also Section 5.

The greatest lower bound of x, y ∈ S with respect to v is denoted by x u y, provided it exists. Unless
explicitly stated, existence is assumed for terms in the antecedent of a statement, but has to be established
for terms in the consequent.

Theorem 6. Let f : S → S be ≤- and v-isotone and assume that µf and νf exist. Then the following are
equivalent:

1. ξf exists.
2. νf ≤ µf + d(νf0)>.
3. ξf = νf0 + µf .
4. ξf = µf u νf .
5. µf u νf = νf0 + µf .
6. νf0 + µf v νf .
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7. µf u νf ≤ νf .

Proof. Proposition 2 shows that (1), (2) and (3) are equivalent. We first add (4), (5) and (6) to this cycle,
and then (7).

(1)⇒ (4): By definition, ξf v µf and ξf v νf . Let x v µf and x v νf , then x ≤ µf + x0 ≤ ξf + x0 and
ξf ≤ νf ≤ x+ d(x0)>, whence x v ξf .

(4)⇒ (5): Clearly (4) implies (1), therefore apply (3).

(5)⇒ (6): This is immediate since µf u νf v νf .

(6)⇒ (2): This holds by νf ≤ νf0 + µf + d((νf0 + µf)0)> = νf0 + µf + d(νf0)> = µf + d(νf0)>.

(5)⇒ (7): This is immediate since νf0 + µf ≤ νf .

(7)⇒ (2): Let m =def µf u νf ≤ νf , then m v µf implies m ≤ µf + m0, whence m v νf implies νf ≤
m+ d(m0)> ≤ µf +m0 + d(m0)> = µf + d(m0)> ≤ µf + d(νf0)>. �

Half of statement (5) of the preceding theorem, namely µf u νf v νf0 + µf , holds provided m = µf u νf
exists. To see this, infer m ≤ µf + m0 ≤ νf0 + µf + m0 from m v µf , and νf0 + µf ≤ νf ≤ m + d(m0)>
from m v νf .

3.3. Isotony without Completeness
We start investigating isotony of the (pre/post)fixpoint operators. Let us first collect the known cases

and simple consequences. The following result covers ≤-isotony.

Theorem 7. Let f, g : S → S be such that f ≤ g.

1. If µ̂f and µ̂g exist, then µ̂f ≤ µ̂g. If additionally f and g are ≤-isotone, then µf ≤ µg.
2. If ν̂f and ν̂g exist, then ν̂f ≤ ν̂g. If additionally f and g are ≤-isotone, then νf ≤ νg.
3. If µ̂f , ν̂f , ξf , µ̂g, ν̂g and ξg exist and f and g are ≤- and v-isotone, then ξf ≤ ξg. If additionally ξ̂f

and ξ̂g exist, then ξ̂f ≤ ξ̂g.

Proof.

1. f(µ̂g) ≤ g(µ̂g) ≤ µ̂g implies µ̂f ≤ µ̂g. By ≤-isotony, µ̂f = µf and µ̂g = µg.
2. This follows dually.
3. By claims (1) and (2), µf ≤ µg and νf ≤ νg. Thus ξf = νf0 + µf ≤ νg0 + µg = ξg by Proposition 2

and ≤-isotony of · and +. If ξ̂f exists, then ξ̂f = ξf by v-isotony of f , and similarly ξ̂g = ξg. �

For example, consider a recursive program x = g(x) such that the body g(x) contains non-determinism,
that is, several possible executions starting in the same state. A step in program development might refine
the body of the recursion g(x) to f(x) such that f(x) is deterministic. Formally this means f(x) ≤ g(x)
for each x ∈ S, that is, f ≤ g. This results in the new recursive program x = f(x). To show that it is
a refinement of the original program, we apply claim (3) of the preceding theorem: provided the stated
existence and isotony requirements are fulfilled, we obtain ξf ≤ ξg.

We now turn to v-isotony of the (pre/post)fixpoint operators. Proposition 3, which is proved just as
claim (1) of Theorem 7, covers the Egli-Milner (pre)fixpoint up to the existence of ξ̂f , which we discuss in
Section 3.4. The ≤-greatest (post)fixpoint follows in Section 3.5. We begin with the ≤-least (pre)fixpoint.
A preparatory lemma shows the effect of f v g in the order ≤.

Lemma 8. Let f, g : S → S be such that f or g is v-isotone and f v g. Then f(x+y0) ≤ g(x)+f(x+y0)0
and g(x+ d(x0)>) ≤ f(x) + d(f(x)0)>. In particular, f(x+ L) ≤ g(x) + L.
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Proof. For every v-isotone h : S → S we have h(x+ y0) v h(x) v h(x+ d(x0)>). Namely, by v-isotony
this reduces to x+ y0 v x v x+ d(x0)>, which is immediate from the definition of v. We remark that the
consequence h(x+ L) ≤ h(x) + L corresponds to [1, Lemma 4.3].

The claims f(x+y0) ≤ g(x)+f(x+y0)0 and g(x+d(x0)>) ≤ f(x)+d(f(x)0)> follow from f(x+y0) v
g(x) and f(x) v g(x+ d(x0)>), which are obtained according to

f(x+ y0) v f(x) v f(x+ d(x0)>)
u u u

g(x+ y0) v g(x) v g(x+ d(x0)>)

using f v g and v-isotony of f or g. In particular, f(x+ L) ≤ g(x) + f(x+>0)0 ≤ g(x) +>0 = g(x) + L. �

Theorem 9. Let f, g : S → S be such that f is ≤- and v-isotone and f v g. If µ̂f and µ̂g exist, then
µ̂f v µ̂g. If additionally g is ≤-isotone, then µf v µg.

Proof. We have µ̂g ≤ µ̂f+d(µ̂f0)> since g(µ̂f+d(µ̂f0)>) ≤ f(µ̂f)+d(f(µ̂f)0)> ≤ µ̂f+d(µ̂f0)> by Lemma
8. Hence f(µ̂g + µ̂f0) ≤ f(µ̂f + d(µ̂f0)>+ µ̂f0) = f(µ̂f + d(µ̂f0)>) ≤ f(µ̂f) + d(f(µ̂f)0)> ≤ µ̂f + d(µ̂f0)>
by ≤-isotony of f and Lemma 8. This implies f(µ̂g + µ̂f0)0 ≤ (µ̂f + d(µ̂f0)>)0 = µ̂f0 + d(µ̂f0)L = µ̂f0 by
(L1). Therefore f(µ̂g+ µ̂f0) ≤ g(µ̂g) + f(µ̂g+ µ̂f0)0 ≤ µ̂g+ µ̂f0 using Lemma 8 again. Thus µ̂f ≤ µ̂g+ µ̂f0,
which gives µ̂f v µ̂g with our first observation. If both f and g are ≤-isotone, then µ̂f = µf and µ̂g = µg. �

3.4. Completeness of the Egli-Milner Order
To obtain v-isotony for ξ according to Proposition 3 we need the existence of ξ̂f , which is not granted

by Proposition 2, whence we use Proposition 4. But then we have to show that S is chain-complete with
respect to v, which we do in the following.

The supremum of the subset D ⊆ S with respect to ≤ is denoted by sup≤D, provided it exists; similarly
inf≤D denotes the infimum and xf y =def inf≤{x, y} the ≤-meet of two elements x, y ∈ S. We start with
a lemma about suprema of domain elements.

Lemma 10. Let D ⊆ d(S) be a set of domain elements and x ∈ S such that px = 0 for each p ∈ D. If
sup≤D exists, then d(sup≤D)x = 0.

Proof. px = 0 ⇔ pd(x) = 0 ⇔ p ≤ a(d(x)) = a(x) for each p ∈ D since p = d(p), hence sup≤D ≤ a(x),
which implies d(sup≤D) ≤ d(a(x)) = a(x)⇔ d(sup≤D)d(x) = 0⇔ d(sup≤D)x = 0. �

We cannot use [12, Proposition 5.2], which states d(sup≤D) = sup≤|d(S) d(D) for an arbitrary D ⊆ S
with existing supremum sup≤D. The reason is that the second supremum sup≤|d(S) is taken among the
domain elements d(S). In a domain semiring S this supremum is in general different from the supremum
taken in S.

A partial order is complete if it has a least element and every directed subset of elements has a supremum.
A subset D is directed if it is not empty and every pair of elements of D has an upper bound in D.

Assume that (S,≤) is a complete partial order. Consider the set F =def {x ∈ S | x0 = 0} of finite
elements [33, Definition 4.6]: it is ≤-directed since 0 ∈ F and any x, y ∈ F have the (least) upper bound
x + y ∈ F . Hence H =def sup≤ F exists; it corresponds to the program havoc. Intuitively, every element
of F has only terminating executions. The next lemma extends this to H and asserts the existence of the
function (fH) used subsequently.

Lemma 11. Assume that (S,≤) is a complete partial order and · distributes over suprema of ≤-directed
sets in its first argument. Then H0 = 0 and uf H exists for each u ∈ S.

Proof. First, H0 = (sup≤ F )0 = sup≤{x0 | x0 = 0} = sup≤{0} = 0. Second, let u ∈ S and consider the
set Fu =def {x ∈ S | x0 = 0 ∧ x ≤ u}: as F it is ≤-directed with least upper bound +, whence sup≤ Fu
exists. We show sup≤ Fu = ufH. Clearly sup≤ Fu ≤ u since x ≤ u for each x ∈ Fu, and sup≤ Fu ≤ H since
Fu ⊆ F . Let x ≤ u and x ≤ H, then x0 ≤ H0 = 0, hence x ∈ Fu, thus x ≤ sup≤ Fu. �
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Intuitively, xfH represents the finite executions of x. By definition, the functions (fH) and (+L) form
a Galois connection if x f H ≤ y ⇔ x ≤ y + L holds for each x, y ∈ S. Using this we can separate each
element x into its infinite part x0 and its finite part xf H, see also [33].

Lemma 12. Assume that the functions (fH) and (+L) form a Galois connection. Then x = x0 + (xf H)
and x ≤ y + L⇔ x ≤ y + x0 for each x, y ∈ S.

Proof. The Galois connection gives x ≤ (xfH)+L, whence d(x0)x ≤ d(x0)((xfH)+L) ≤ (xfH)+d(x0)L =
(x f H) + x0 by (L1). Moreover a(x0)x ≤ x f H because a(x0)x ≤ x and a(x0)x0 = 0 implies a(x0)x ∈ F
and hence a(x0)x ≤ H. Together x = d(x0)x+ a(x0)x ≤ x0 + (xf H) ≤ x, showing the first claim.

The backward implication of the second claim is immediate by x0 ≤ >0 = L. For the forward implication
assume x ≤ y + L, then xf H ≤ y by Galois, whence x = x0 + (xf H) ≤ x0 + y by the first claim. �

The existence of the Galois connection in the previous lemma is equivalent to the following conditions:
(fH) distributes over +, (+L) distributes over existing f, L + H = > and LfH = 0. As a consequence, we
obtain the following equivalent representation of the Egli-Milner order: x v y ⇔ x ≤ y+L∧y ≤ x+d(x0)>.
We can now establish the main result, namely, completeness of the Egli-Milner order.

Theorem 13. Assume that

1. (S,≤) is a complete partial order,
2. the function · distributes over suprema of ≤-directed sets in its first argument,
3. the supremum of a ≤-directed set of domain elements is a domain element, and
4. the functions (fH) and (+L) form a Galois connection.

Then (S,v) is a complete partial order.

Proof. By Proposition 1, S has the v-least element L. Let D ⊆ S be v-directed.
Consider DH =def {u f H | u ∈ D}. To see that DH is ≤-directed, let u, v ∈ D and w some v-upper

bound, hence u v w and v v w. Then u ≤ w + L, whence uf H ≤ w by the Galois connection, and clearly
uf H ≤ H, thus uf H ≤ w f H. Similarly v f H ≤ w f H, and therefore w f H is an upper bound in DH .

Consider DL =def {x0 | x ∈ D}. To see that DL is ≥-directed, let u v w and v v w for some v-upper
bound w of u, v ∈ D. Then w ≤ u + d(u0)>, whence w0 ≤ (u + d(u0)>)0 = u0 + d(u0)L = u0 by (L1).
Similarly w0 ≤ v0, and therefore w0 is a lower bound in DL.

To construct the ≤-infimum of DL, consider DN =def {a(x0) | x ∈ D}: it is ≤-directed since the
antidomain a is ≤-antitone and DL is ≥-directed. Hence sup≤DN exists.

We show inf≤DL = a(sup≤DN )L. For each x ∈ D we have a(x0) ≤ sup≤DN , whence a(sup≤DN )L ≤
a(a(x0))L = d(x0)L = x0 by (L1), so a(sup≤DN )L is a lower bound of DL. Let z ≤ x0 for each x ∈ D, then
a(x0)z ≤ a(x0)x0 = 0, whence d(sup≤DN )z = 0 by Lemma 10. Thus z = a(sup≤DN )z ≤ a(sup≤DN )y0 ≤
a(sup≤DN )L using some y ∈ D 6= ∅.

We finally show supvD = s =def inf≤DL + sup≤DH . To see that s is an v-upper bound of D,
let x ∈ D and we show x v s. First, x f H ≤ sup≤DH , hence x ≤ sup≤DH + L ≤ s + L by Galois.
Second, inf≤DL ≤ x0 ≤ d(x0)> ≤ x + d(x0)>, whence it remains to show sup≤DH ≤ x + d(x0)>, or
u f H ≤ x+ d(x0)> for each u ∈ D. But this follows by the Galois connection using an v-upper bound w
of x and u, because x v w and u v w imply u ≤ w + L ≤ x+ d(x0)>+ L.

To show that s is the least v-upper bound, let x v z for each x ∈ D, hence x ≤ z+L and z ≤ x+d(x0)>.
Now s ≤ z + L follows because inf≤DL = a(sup≤DN )L ≤ L and sup≤DH ≤ z since x f H ≤ z by Galois.
So for s v z it remains to show z ≤ s+ d(s0)>, which follows from z ≤ sup≤DH + d(inf≤DL · 0)>. This is
simplified using inf≤DL · 0 = a(sup≤DN )L0 = a(sup≤DN )L and d(a(sup≤DN )L) = d(a(sup≤DN )d(L)) =
d(a(sup≤DN )) = a(sup≤DN ) by (L2). Hence it suffices to show z ≤ sup≤DH+a(sup≤DN )> or equivalently
d(sup≤DN )z ≤ sup≤DH . By the assumptions we can remove d and distribute (·z), so that we are left with
a(x0)z ≤ sup≤DH for each x ∈ D. But this follows since a(x0)z ≤ x f H: on the one hand a(x0)z ≤
a(x0)(x + d(x0)>) = a(x0)x + 0 ≤ x; on the other hand this implies a(x0)z0 ≤ a(x0)x0 = 0, whence
a(x0)z ≤ H. �

10



Restricting the claim of the previous theorem to chain-completeness does not reduce the assumptions,
since the definition of H and Lemma 11 are based on directed sets. A proof shortcut via a fixpoint theorem
and its converse [31, Theorem 11] fails because Proposition 2 requires each function f to be both ≤- and
v-isotone and poses the additional constraint νf ≤ µf + d(νf0)>.

By combining Theorem 13 with Propositions 3 and 4, we obtain v-isotony for ξ̂ and ξ.

Corollary 14. Assume the conditions of Theorem 13 and let f, g : S → S be v-isotone such that f v g.
Then ξ̂f v ξ̂g and ξf v ξg.

For example, consider two mutually recursive programs x = tx + uy and y = vx + wy using arbitrary
programs t, u, v, w ∈ S. The semantics of the recursion x may be obtained as the prefixpoint ξ̂f of the
function f(x) = tx + uξ̂gx using the nested prefixpoint of the parametric function gx(y) = vx + wy. By
Proposition 1 we know that gx is v-isotone for each x ∈ S. But to obtain that ξ̂f exists by Proposition 4,
we need that f is v-isotone. To show this, assume x v z: then gx(y) = vx + wy v vz + wy = gz(y) for
each y ∈ S by Proposition 1, that is, gx v gz; hence ξ̂gx v ξ̂gz by Corollary 14 assuming the conditions of
Theorem 13; therefore f(x) = tx+ uξ̂gx v tx+ uξ̂gz = f(z) again by Proposition 1. Because f and gx are
v-isotone, the prefixpoints are actually fixpoints.

3.5. Isotony of the Greatest Fixpoint Operator
It remains to investigate v-isotony for the ≤-greatest (post)fixpoint operators. This case can be treated

without completeness up to assuming ξg0 ≤ ξf0 and the existence of (fH). We first recall the precise
conditions of ν-fusion; the proof follows [9, Rule 8.30].

Lemma 15. Let (P,≤P ) and (Q,≤Q) be partial orders. Assume that f− : P → Q and f+ : Q→ P form a
Galois connection f−(x) ≤Q y ⇔ x ≤P f+(y). Let g : Q→ Q and h : P → P be such that h is ≤P -isotone
and ν̂g and νh exist. If h ◦ f+ ≤P f+ ◦ g then νh ≤P f+(ν̂g).

Assume additionally that h ◦ f+ = f+ ◦ g. If g is ≤Q-isotone then νh = f+(ν̂g) = f+(νg). If ν̂h exists
then ν̂h = νh = f+(ν̂g).

Proof. νh ≤P f+(f−(νh)) by Galois, hence νh = h(νh) ≤P h(f+(f−(νh))) ≤P f+(g(f−(νh))) by ≤P -
isotony of h and h ◦ f+ ≤P f+ ◦ g. Thus f−(νh) ≤Q g(f−(νh)) by Galois, whence f−(νh) ≤Q ν̂g, which
implies νh ≤P f+(ν̂g) by Galois.

For the remaining claims, let h ◦ f+ = f+ ◦ g. If g is ≤Q-isotone then ν̂g = νg, whence f+(ν̂g) =
f+(g(ν̂g)) = h(f+(ν̂g)), thus f+(ν̂g) ≤P νh. Finally ν̂g ≤Q g(ν̂g) implies f+(ν̂g) ≤P f+(g(ν̂g)) = h(f+(ν̂g))
since f+ is order-preserving by Galois, whence if ν̂h exists then f+(ν̂g) ≤P ν̂h = νh by ≤P -isotony of h. �

Theorem 16. Let f, g : S → S be such that f and g are ≤-isotone, g is v-isotone and f v g. Assume
that νf , ξf , µ̂g, ν̂g and ξg exist and ξg0 ≤ ξf0. Assume that the functions (fH) and (+L) form a Galois
connection. Then νf v νg. If additionally ν̂f exists, then ν̂f v ν̂g.

Proof. We obtain f(x + L) ≤ g(x) + L by Lemma 8 using f v g and v-isotony of g. Hence νf ≤ ν̂g + L
by the ν-fusion of Lemma 15 using the Galois connection and ≤-isotony of f . Therefore νf ≤ ν̂g + νf0 by
Lemma 12.

By ≤-isotony of g we get µg = µ̂g and νg = ν̂g; moreover ξg exists. Hence Proposition 2 yields
νg ≤ µg + d(νg0)> and ξg0 = νg0 using ≤- and v-isotony of g. Thus νg0 = ξg0 ≤ ξf0 ≤ νf0, while
µ̂g ≤ νf + d(νf0)> follows since g(νf + d(νf0)>) ≤ f(νf) + d(f(νf)0)> = νf + d(νf0)> by Lemma 8.
Together νg ≤ νf + d(νf0)>, whence νf v νg.

If additionally ν̂f exists, then ν̂f = νf , whence ν̂f v ν̂g. �

To infer the missing ξg0 ≤ ξf0 we use v-isotony of ξ. We thus obtain v-isotony for ν̂ and ν.

Corollary 17. Assume the conditions of Theorem 13 and let f, g : S → S be ≤- and v-isotone such that
f v g. Then ν̂f v ν̂g and νf v νg.
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Proof. Since (S,≤) is complete and f is ≤-isotone, µ̂f = µf exists by Proposition 4 applied to the order
≤. Since (S,v) is complete by Theorem 13 and f is v-isotone, ξ̂f = ξf exists by Proposition 4. We now
show that ν̂f exists.

Let D =def {x | x ≤ f(x)} be the set of postfixpoints of f : it is ≤-directed since 0 ∈ D and for x, y ∈ D
we have x ≤ f(x) ≤ f(x + y) and y ≤ f(y) ≤ f(x + y) by ≤-isotony of f , whence x + y ≤ f(x + y), thus
x + y ∈ D is the least upper bound of x and y in D. Hence sup≤D exists. For each x ∈ D we obtain
x ≤ f(x) ≤ f(sup≤D) by ≤-isotony of f , whence sup≤D ≤ f(sup≤D), thus sup≤D ∈ D is the greatest
postfixpoint ν̂f of f . By ≤-isotony of f , it is the greatest fixpoint, too.

In the same way we get that µ̂g = µg and ν̂g = νg and ξ̂g = ξg exist. Moreover ξf v ξg by Corollary 14,
hence ξg0 ≤ (ξf + d(ξf0)>)0 = ξf0 + d(ξf0)L = ξf0 by (L1). Thus νf v νg and ν̂f v ν̂g by Theorem 16. �

The existence of greatest postfixpoints in the previous result can also be obtained by [31, Corollary 5] if
the Axiom of Choice is assumed.

3.6. While-Loops
We now look at the specific recursion describing while-loops: the semantics of while p do y is the v-

least fixpoint of the function λx.d(p)yx + a(p). Consider the more general function f : S → S given by
f(x) = yx + z for arbitrary programs y, z ∈ S. The ≤-least and ≤-greatest fixpoints of f are represented
using the Kleene star and omega operations [29, 8].

The omega operation describes infinite iterations. Together with the Kleene star for finite iterations it
is axiomatised in [33] for semirings without the right zero law:

1 + y∗y ≤ y∗ z + xy ≤ x ⇒ zy∗ ≤ x
1 + yy∗ ≤ y∗ z + yx ≤ x ⇒ y∗z ≤ x

yyω = yω x ≤ yx+ z ⇒ x ≤ yω + y∗z

The operations ∗ and ω are ≤-isotone. Properties used below are y∗ = y∗y∗ = (y∗y)∗ = 1 + yy∗ and
y∗0 ≤ yω0 and yω = y∗yω = (y∗y)ω = yω> and (x+ y)ω = (x∗y)ω + (x∗y)∗xω.

A particular consequence of the above axioms is that µf = µ̂f = y∗z and νf = ν̂f = yω + y∗z. By
Proposition 2 we have ξf = νf0 +µf = yω0 + y∗z. Using the combined iteration operation y◦ =def y

ω0 + y∗

we thus obtain the semantics of while-loops as ξf = y◦z. The Kleene star and the combined iteration are
v-isotone [24, Theorem 6]. To show v-isotony of omega, we can invoke Theorem 16 or Corollary 17 using
the extra assumptions of a Galois connection or completeness, as required. However, a proof without these
assumptions can be given, similarly to [25, Theorem 6].

Theorem 18. Assume the above axioms hold in S and let x, y ∈ S such that x v y. Then xω v yω.

Proof. From x v y we obtain x ≤ y + x0 and y ≤ x + d(x0)> and x∗ v y∗, whence y∗ ≤ x∗ + d(x∗0)>.
The latter implies y∗x0 ≤ (x∗ + d(x∗0)>)x0 ≤ x∗0 + d(x∗0)L = x∗0 by (L1). Therefore,

xω ≤ (y + x0)ω = (y∗x0)ω + (y∗x0)∗yω = y∗x0 + yω ≤ yω + x∗0 ≤ yω + xω0 .

Moreover,

yω ≤ (x+ d(x0)>)ω = (x∗d(x0)>)ω + (x∗d(x0)>)∗xω = x∗d(x0)>(x∗d(x0)>)ω + xω + x∗d(x0)>xω
≤ xω + x∗d(x0)> ≤ xω + d(x∗x0)> ≤ xω + d(x∗0)> ≤ xω + d(xω0)> .

Together we obtain xω v yω. �

We conclude by several properties of these operators similar to the Kleene star axioms, but with respect
to v. From [24, Lemma 5] we know 1 + y◦y = 1 + yy◦ = y◦.
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Theorem 19. Assume the above axioms hold in S and let x, y, z ∈ S. Then

xy v x ⇒ x(y + 1) v x⇒ xy◦ v xy∗ v x
yx v x ⇒ (y + 1)x v x⇒ y◦x v y∗x v x

z + yx v x ⇒ y◦z v x

Proof. Since x ≤ x(y+1) we obtain that x(y+1) v x is equivalent to x(y+1) = xy+x ≤ x+xy0, and hence
to xy ≤ x+xy0. But this follows from xy v x and implies x+ (x+xy∗0)y = x+xy+xy∗0 = x+xy∗0, thus
xy∗ ≤ x+xy∗0 and xy◦ = xyω0+xy∗ ≤ xy◦0+xy∗. Moreover x ≤ xy∗+d(xy∗0)> and xy∗ ≤ xy◦+d(xy◦0)>
since 1 ≤ y∗ ≤ y◦. Together we obtain xy◦ v xy∗ v x.

Symmetrically, (y + 1)x v x is equivalent to yx ≤ x + yx0, which follows from yx v x and implies
x+y(x+y∗x0) = x+yx+yy∗x0 ≤ x+y∗x0, thus y∗x ≤ x+y∗x0 and y◦x = yω0+y∗x ≤ y◦x0+y∗x. Again
x ≤ y∗x+ d(y∗x0)> and y∗x ≤ y◦x+ d(y◦x0)> since 1 ≤ y∗ ≤ y◦. Together we obtain y◦x v y∗x v x.

For the final claim assume z+yx v x. Then x ≤ z+yx+d((z+yx)0)> = yx+z+d(z0+yx0)>, whence
x ≤ yω + y∗(z + d(z0 + yx0)>). But this implies x0 ≤ yω0 + y∗(z0 + d(z0 + yx0)L) = yω0 + y∗z0 + y∗yx0
by (L1), whence x0 ≤ (y∗y)ω + (y∗y)∗(yω0 + y∗z0) = yω + y∗yω0 + y∗y∗z0 = yω + y∗z0. Continuing the
previous calculation,

x ≤ yω + y∗(z + d(z0 + y(yω + y∗z0))>) = yω + y∗z + y∗d(yω + y∗z0)>
= yω + y∗z + d(yω)>+ d(y∗z0)> = yω0 + y∗z + d(yω0)>+ d(y∗z0)> = y◦z + d(y◦z0)>

since y∗d(yω + y∗z0)> ≤ d(y∗(yω + y∗z0))> = d(yω + y∗z0)> = d(yω)> + d(y∗z0)> and yω + d(yω)> =
d(yω)> = d(yωd(L))> = d(yωL)> = d(yω0)> = yω0 + d(yω0)> by (L2).

Moreover z+yx ≤ x+(z+yx)0 = x+z0+y(x0)0 ≤ x+z0+y(yω +y∗z0)0 = x+yω0+y∗z0 = x+y◦z0
by the assumption, whence also z + y(x + y◦z0) = z + yx + yy◦z0 ≤ x + y◦z0. Therefore y∗z ≤ x + y◦z0
and hence y◦z ≤ x+ y◦z0. Together, y◦z v x. �

The last claim shows that ξ̂f = y◦z holds, too. On the other hand, z + xy v x implies neither zy∗ v x
nor zy◦ v x in general, as the counterexample x = y = 1 and z = 0 shows, which also refutes z + yx v x⇒
y∗z v x. Observe that again operations axiomatised with respect to the natural order ≤, namely +, ·, ∗, ω
and ◦, are used in inequalities with respect to the other order v.

4. Fixpoints in Distributive Lattices

In this section we investigate what can be derived about general correctness in a lattice-based setting,
disregarding the operations of sequential composition · and (anti)domain. Hence we abandon the axioms of
the previous section, and introduce new ones. Observe that also the new axioms abstract from the model
discussed in Section 2.

A distributive lattice is a structure (S,+,f) satisfying the following axioms:

x+ x = x xf x = x
x+ y = y + x xf y = y f x

x+ (y + z) = (x+ y) + z xf (y f z) = (xf y)f z
x+ (xf y) = x xf (x+ y) = x
x+ (y f z) = (x+ y)f (x+ z) xf (y + z) = (xf y) + (xf z)

Reduced axiom sets are discussed in [2]. As usual, the natural order is x ≤ y ⇔def x + y = y. It follows
that + and f are ≤-isotone. Again, the operation + represents non-deterministic choice, f represents
conjunction and ≤ refinement.

The ternary median operation is (x, y, z) =def (xfy)+(yfz)+(zfx), see [21, 3, 2]. It is self-dual and a
collection of its symmetries is given in [28]. The median operation is relevant to program semantics because
it induces an order that is a superset of the Egli-Milner order, as we show in Section 5. By investigating the
median operation, we can thus obtain results about general correctness.
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4.1. Pointed Distributive Lattices
We are interested in an instance of the median operation as [28]. Fix an element L ∈ S, and define the

operation x u y =def (L, x, y) = (L f x) + (x f y) + (y f L) and the relation x v y ⇔def x = x u y. The
following properties can be derived automatically, for example, by using Prover9.

Proposition 20. (S,u, L) is a meet-semilattice (associative, commutative and idempotent) partially ordered
by v with least element L. The operations +, f and u distribute over each other. The two orders of S satisfy
x ≤ y ⇔ xfL ≤ y∧x ≤ y+L and x v y ⇔ yfL ≤ x ≤ y+L. If x ≤ y then xuy = (yfL)+x = yf(L+x).

We write yfL+x whenever this is not ambiguous. The preceding characterisation of v is used frequently
in this section. For the difference between a join- and a meet-semilattice, see [2]. In particular, v need not
be uniquely characterised as a partial order with isotone operation u and least element L.

The above construction works for an arbitrary element L ∈ S. In Section 5 we establish the connection
to general correctness by choosing L as in Section 3, representing the program that contains only non-
terminating executions. This choice is evident because both the semiring- and the lattice-based settings are
abstractions of the same model, as discussed in Section 2.

Several properties related to isotony are shown by the following lemma. In particular, they can be used
to weaken the isotony requirements for showing the existence of fixpoints. Condition (8) also appears in the
proof of Lemma 8.

Lemma 21. Let f : S → S and consider the following statements, each universally quantified:

(1) f(y)f L ≤ f((y f L) + x) f(xf (y + L)) ≤ f(y) + L (5)
(2) f(y)f L ≤ f((y f L) + (xf (y + L))) f(((Lf y) + x)f (y + L)) ≤ f(y) + L (6)
(3) f(y)f L ≤ f((y f L) + (xf y)) f((y + x)f (y + L)) ≤ f(y) + L (7)
(4) f(y)f L ≤ f(y f L) f(y + L) ≤ f(y) + L (8)

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) and (5) ⇒ (6) ⇒ (7) ⇒ (8). If f is ≤-isotone, then (4) ⇒ (1) and (8) ⇒ (5).
If (1) and (5) hold, then f is ≤-isotone. Finally, f is v-isotone if and only if (2) and (6) hold.

Proof. The six implications of the first claim arise by substituting xf(y+L), xfy, L, (Lfy)+x, x+y and L,
respectively, for the unique occurrence of x in each antecedent. The second claim is immediate by ≤-isotony
of f . For the third claim we use Proposition 20 to rewrite ≤-isotony of f , that is, x ≤ y ⇒ f(x) ≤ f(y) as

xf L ≤ y ∧ x ≤ y + L⇒ f(x)f L ≤ f(y) ∧ f(x) ≤ f(y) + L .

Separating the conjunctions, this clearly follows from the two implications

(xf L ≤ y ⇒ f(x)f L ≤ f(y)) ∧ (x ≤ y + L⇒ f(x) ≤ f(y) + L) .

But these are recognised as instances of (1) and (5), respectively.
For the fourth claim observe that the arguments of f on the right hand side of (2) and on the left hand

side of (6) are both xuy, the latter by self-duality of the median operation. Hence the conjunction of (2) and
(6) is equivalent to f(y)f L ≤ f(xu y) ≤ f(y) + L. By Proposition 20 this is equivalent to f(xu y) v f(y),
which is a way to state v-isotony of f . �

4.2. Fixpoints in Pointed Distributive Lattices
In the following we give representations of (pre)fixpoints in the above setting of a distributive lattice

with a fixed element L. We reuse the notation for fixpoints introduced in Section 3:

f(ξf) = ξf f(x) = x ⇒ ξf v x f(ξ̂f) v ξ̂f f(x) v x ⇒ ξ̂f v x
f(µf) = µf f(x) = x ⇒ µf ≤ x f(µ̂f) ≤ µ̂f f(x) ≤ x ⇒ µ̂f ≤ x
f(νf) = νf f(x) = x ⇒ νf ≥ x f(ν̂f) ≥ ν̂f f(x) ≥ x ⇒ ν̂f ≥ x

If µf , νf and ξf exist, then clearly ξf v µf and ξf v νf , whence ξf v µf u νf . The following result forces
equality provided the fixpoints exist; a part of it is proved in the setting of bilattices in [19].
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Lemma 22. Let f : S → S and assume that µf and νf exist. Then µf u νf = νf f L + µf v x for every
fixpoint x = f(x) ∈ S. Hence if ξf exists, then ξf = µf u νf = νf f L + µf .

Analogous statements hold with µ̂f replacing µf , or ν̂f replacing νf .

Proof. We only reason for the case that µf and νf exist; the same argument applies to the other three
combinations. Let f(x) = x, then µf ≤ x ≤ νf , whence xf L ≤ νf f L ≤ νf f L + µf ≤ L + µf ≤ x+ L and
therefore νf f L + µf v x by Proposition 20. Moreover µf u νf = νf f L + µf by Proposition 20. �

We thus obtain a representation of v-least fixpoints by fixpoints with respect to ≤. The following results
extend this to v-least prefixpoints and give conditions for the existence of the (pre)fixpoints. They should
be compared with Theorem 6. As in the semiring-based setting, the representations are useful for general
correctness because the refinement order ≤ is simpler.

Theorem 23. Let f : S → S satisfy conditions (3) and (7) of Lemma 21. If µ̂f ≤ ν̂f , then ξ̂f = µ̂f u ν̂f =
ν̂f f L + µ̂f . If additionally f is v-isotone and µf and νf exist, then ξf = µf u νf = νf f L + µf .

Proof. By Proposition 20 we obtain µ̂f u ν̂f = ν̂f f L + µ̂f since µ̂f ≤ ν̂f . Using conditions (3) and (7) in
the central steps we obtain

(ν̂f f L + µ̂f)f L = ν̂f f L ≤ f(ν̂f)f L ≤ f(ν̂f f L + µ̂f) ≤ f(µ̂f) + L ≤ µ̂f + L = (ν̂f f L + µ̂f) + L ,

and hence f(µ̂f u ν̂f) v µ̂f u ν̂f by Proposition 20.
Let f(x) v x, then xf L ≤ f(x) ≤ x+ L by Proposition 20. By conditions (4) and (8) of Lemma 21 we

obtain xf L ≤ f(x)f L ≤ f(xf L) and f(x+ L) ≤ f(x) + L ≤ x+ L, hence xf L ≤ ν̂f and µ̂f ≤ x+ L. But
this implies xf L ≤ ν̂f f L + µ̂f ≤ x+ L, whence ν̂f f L + µ̂f v x by Proposition 20.

If f is v-isotone, then ξf = ξ̂f , whence the remaining claim follows by Lemma 22. �

The assumption µ̂f ≤ ν̂f of the preceding theorem is in particular satisfied if µ̂f and ν̂f exist and f
has a fixpoint. Without assuming the existence of µ̂f and ν̂f we have to use both ≤- and v-isotony as the
following result shows.

Theorem 24. Let f : S → S be ≤- and v-isotone. If µf and νf exist, then ξf = µf u νf = νf f L + µf .

Proof. Since µf ≤ νf we obtain µf u νf = νf f L +µf by Proposition 20, and hence µf ≤ µf u νf ≤ νf . By
v-isotony of f we have f(µf u νf) v f(µf) = µf and f(µf u νf) v f(νf) = νf , whence f(µf u νf) v µf u νf .
The converse inequality follows by Proposition 20 since

f(µf u νf)f L ≤ f(νf)f L = νf f L ≤ νf f L + µf ≤ µf + L = f(µf) + L ≤ f(µf u νf) + L

using ≤-isotony of f . Thus µf u νf is a fixpoint of f . Hence it is the v-least by Lemma 22. �

The representation ξf = µf u νf is shown already in [18, Theorem 7.7] for finite distributive bilattices.
A distributive bilattice is a set S with two partial orders that both induce a complete lattice on S in which
all meets and joins distribute over each other. In other contexts related to logic programming, bilattices are
assumed to have a negation operation [20]. By [28, Lemma 1.2] every bounded (and hence every complete
or even finite) distributive bilattice arises via the construction of Section 4.1 using the median operation.
Theorems 23 and 24 do not assume bounds on S or the existence of the v-least (pre)fixpoints.

4.3. Bounded Distributive Lattices
Further structure is obtained by assuming bounds in (S,≤) and a complement of L, or one of the

equivalent conditions of the following theorem. A lattice (S,+,f) is bounded if it has a least element 0 and
a greatest element >, equivalently x + 0 = x = x f > for each x ∈ S. The least upper bound of x, y ∈ S
with respect to v is denoted by x t y, provided it exists.
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Theorem 25. The following are equivalent, and H is the same in all cases:

1. ∀x ∈ S : x v H, that is, H is the v-greatest element.
2. ∀x ∈ S : 0 ≤ x ≤ > ∧ H = 0 t >, that is, ≤ is bounded by 0 and > whose v-join is H.
3. ∀x ∈ S : HfL = 0 ≤ x ≤ > = H + L, that is, ≤ is bounded by 0 and >, and H and L are complements.
4. ∀x, y ∈ S : xf L ≤ y ⇔ x ≤ y + H, that is, the functions (fL) and (+H) form a Galois connection.
5. ∀x, y ∈ S : xf H ≤ y ⇔ x ≤ y + L, that is, the functions (fH) and (+L) form a Galois connection.

Proof. We repeatedly apply Proposition 20 for the first two equivalences.
Thus x v H is equivalent to Hf L ≤ x ≤ H + L, which shows (1)⇔ (3).
Assume (3), then 0 v H since H f L ≤ 0 ≤ H + L, and > v H since H f L ≤ > ≤ H + L, and 0 v x and

> v x imply xf L ≤ 0 ≤ H ≤ > ≤ x+ L and hence H v x; thus H = 0 t>. On the other hand, (2) implies
0 v H and > v H, whence Hf L ≤ 0 and > ≤ H + L. Together we obtain (2)⇔ (3).

Assume (3), then x ≤ x + H = (x + H) f (L + H) = (x f L) + H and similarly x ≤ (x f H) + L, and
(y + H) f L = (y f L) + (H f L) = y f L ≤ y and similarly (y + L) f H ≤ y. The Galois connections follow
by [9, Lemma 7.26] using ≤-isotony of f and +.

On the other hand, Hf L ≤ y is implied by H ≤ y + H or L ≤ y + L using either Galois connection, and
similarly x ≤ L + H is implied by xf L ≤ L or xf H ≤ H. Together we obtain (4)⇔ (3)⇔ (5). �

The Galois connection (5) is used in Theorem 13.
If (S,≤) is bounded by 0 and > we obtain a number of connections between the available operations

even without assuming the existence of H. Thus (u0) = (fL) since xu0 = (Lfx)+(xf0)+(0fL) = Lfx,
and (u>) = (+L) since x u > = (Lf x) + (xf>) + (>f L) = x+ L. From either fact L = 0 u > follows.

But much more can be said with H. The following result is mentioned by [3] and elaborated in [27, 28]
based on condition (3) of Theorem 25.

Proposition 26. Assume one of the conditions (1)–(5) stated in Theorem 25. Then (S,t, L,u,H) is a
bounded distributive lattice where x t y = (H, x, y) = (Hf x) + (xf y) + (y f H).

Moreover [27, 28] add that 0 and > are complements in the induced lattice, the operations +, f, t and
u distribute over each other, and the original bounded distributive lattice is recovered by applying the same
construction again. This shows a symmetry between the operations and orders, which is not available in
the semiring-based setting. Particular results about the semantics of programs may thus be easier derived
in the lattice-based setting and, using the link in Section 5, interpreted in a general correctness model based
on the Egli-Milner order.

4.4. Isotony of Fixpoint Operators
Isotony of the pre- and postfixpoint operators is less difficult to establish in the present setting of bounded

distributive lattices. The following result should be compared with Theorems 7 and 9 and Corollaries 14
and 17.

Theorem 27. Let f, g : S → S.

1. The operators µ̂ and ν̂ preserve ≤ and the operator ξ̂ preserves v.
2. If f ≤ g and f and g are v-isotone and µ̂f ≤ ν̂f and µ̂g ≤ ν̂g, then ξ̂f ≤ ξ̂g.
3. Assume one of the conditions (1)–(5) stated in Theorem 25. Assume that f v g, that f is ≤-isotone

and that f or g is v-isotone. If µ̂f and µ̂g exist, then µ̂f v µ̂g. If ν̂f and ν̂g exist, then ν̂f v ν̂g.

Proof. Claim (1) is standard [9, Rule 8.28].
For claim (2) apply Theorem 23 to obtain ξ̂f = ν̂f fL+ µ̂f ≤ ν̂gfL+ µ̂g = ξ̂g since µ̂f ≤ µ̂g and ν̂f ≤ ν̂g

by claim (1).
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For claim (3), let f v g, whence g(x) f L ≤ f(x) ≤ g(x) + L for each x ∈ S by Proposition 20. Then
g(x)f L ≤ f(xf L) and f(x+ L) ≤ g(x) + L follow according to

g(x)f L ≤ g(xf L)f L f(x+ L) ≤ f(x) + L
∧ ∧ ∧ ∧

f(x)f L ≤ f(xf L) g(x+ L) + L ≤ g(x) + L

by conditions (4) and (8) of Lemma 21 using v-isotony of f or g. Thus ν̂g f L ≤ g(ν̂g) f L ≤ f(ν̂g f L),
whence ν̂gfL ≤ ν̂f . Moreover ν̂f ≤ ν̂g+L by the ν-fusion of Lemma 15 using ≤-isotony of f and the Galois
connection (5) of Theorem 25. Hence ν̂f v ν̂g by Proposition 20.

Furthermore f(µ̂g+ L) ≤ g(µ̂g) + L ≤ µ̂g+ L, whence µ̂f ≤ µ̂g+ L. Also µ̂gf L ≤ µ̂f by µ-fusion, that is,
the dual of Lemma 15 using the Galois connection (4) of Theorem 25. Hence µ̂f v µ̂g by Proposition 20. �

Similar claims can be made for the fixpoint operators. A particular difference to Section 3 is that due
to Theorems 23 and 24 it is not necessary to invoke completeness of (S,v). Conditions for completeness of
this induced lattice are described in [28].

4.5. Greatest Fixpoints
Since the induced structure is a lattice, it makes sense to talk about v-greatest (post)fixpoints, too. Let

f : S → S, then the v-greatest fixpoint of and the v-greatest postfixpoint ôf are given by

f(of) = of f(x) = x ⇒ of w x f(ôf) w ôf f(x) w x ⇒ ôf w x

The following result corresponds to Theorem 23.

Corollary 28. Assume one of the conditions (1)–(5) stated in Theorem 25. Let f : S → S satisfy conditions
(3) and (7) of Lemma 21. If µ̂f ≤ ν̂f , then ôf = µ̂f t ν̂f = ν̂f f H + µ̂f . If additionally f is v-isotone and
µf and νf exist, then of = µf t νf = νf f H + µf .

Proof. According to Proposition 26 the t operation is obtained by replacing L with H in the definition
of u. Moreover the induced bounded distributive lattice satisfies x = x u y ⇔ y = x t y. Hence starting
the construction of Section 4.1 with H instead of L and applying Proposition 26 gives the dual lattice, with
swapped join and meet, and the converse order w. But greatest (post)fixpoints in the dual lattice are least
(pre)fixpoints in the original lattice. Therefore all claims follow by Theorem 23, provided we can adapt the
conditions (3) and (7) of Lemma 21. Recall these conditions and replace L with H to obtain (3′) and (7′):

(3) f(y)f L ≤ f(y f (L + x)) f(y + (xf L)) ≤ f(y) + L (7)
(3′) f(y)f H ≤ f(y f (H + x)) f(y + (xf H)) ≤ f(y) + H (7′)

Again, each statement is universally quantified. To show (3)⇔ (7′), consider the Galois connected version
of (7′), namely f(y + (xf H))f L ≤ f(y). It follows from (3) by

f(y + (xf H))f L ≤ f((y + (xf H))f (L + y)) = f(y + (xf Hf L)) = f(y + 0) = f(y) ,

and it implies (3) by

f(y)f L = f(y f>)f L = f(y f (L + x+ H))f L = f((y f (L + x)) + (y f H))f L ≤ f(y f (L + x)) .

Similarly (7)⇔ (3′) can be shown. �

On the other hand, analogous equivalences for the conditions (4) and (8) of Lemma 21 do not hold: for
example, ∀y : f(y)f L ≤ f(y f L) does not imply ∀y : f(y + H) ≤ f(y) + H as a counterexample generated
by Mace4 shows. Note that also the preceding corollary does not rely on the existence of the v-greatest
(post)fixpoints; otherwise we find of = µf t νf in the bilattice setting in [18, 19].

By the construction in the proof, also Theorems 24 and 27 can be extended to greatest (post)fixpoints.
Moreover, since the original lattice is recovered by applying Proposition 26 again, we immediately obtain
µ̂f = ξ̂f f ôf and ν̂f = ξ̂f + ôf . Both can also be shown directly by

ξ̂f f ôf = (ν̂f f L + µ̂f)f (ν̂f f H + µ̂f) = (ν̂f f Lf ν̂f f H) + µ̂f = 0 + µ̂f = µ̂f ,

ξ̂f + ôf = (ν̂f f L + µ̂f) + (ν̂f f H + µ̂f) = (ν̂f f (L + H)) + µ̂f = ν̂f + µ̂f = ν̂f .
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5. Linking Semirings and Distributive Lattices

In this section we use a technique of [7] to apply the results obtained in the lattice-based setting to our
theory of general correctness described in Section 3.

The following result to transfer fixpoints between partial orders is based on [7, Proposition 2]; we prove a
generalisation that decouples the existence of the involved fixpoints and separates prefixpoints and fixpoints.
Consider a set P with two partial orders ≤1 and ≤2, and a function f : P → P . Denote the least fixpoints
of f with respect to ≤1 and ≤2 by µ1 and µ2, the least prefixpoints by µ̂1 and µ̂2, respectively.

Lemma 29. Assume ≤1⊆≤2. If µ1 exists, then µ2 exists and µ1 = µ2. If µ̂1 and µ̂2 = µ2 exist, then µ1

exists and µ1 = µ̂1 = µ̂2.

Proof. If µ1 exists, then f(µ1) = µ1 and f(x) = x⇒ µ1 ≤1 x⇒ µ1 ≤2 x, thus µ1 is the least fixpoint µ2

of f with respect to ≤2.
If µ̂1 and µ̂2 = µ2 exist, then f(µ̂2) = f(µ2) = µ2 = µ̂2 ⇒ µ̂1 ≤1 µ̂2 ⇒ µ̂1 ≤2 µ̂2. Furthermore

f(µ̂1) ≤1 µ̂1 ⇒ f(µ̂1) ≤2 µ̂1 ⇒ µ̂2 ≤2 µ̂1. Together µ̂1 = µ̂2, whence f(µ̂1) = f(µ̂2) = µ̂2 = µ̂1. But clearly
f(x) = x⇒ µ̂1 ≤1 x, thus µ̂1 is the least fixpoint µ1 of f with respect to ≤1. �

To link the semiring- and the lattice-based settings, we denote by v′ the Egli-Milner order of Section 3
and keep v for the order induced by Proposition 20 in Section 4. The following result shows that v′ is a
subset of v, whence Lemma 29 applies.

Theorem 30. Assume a structure S which is both a distributive lattice (S,+,f) and a bounded antidomain
semiring (S,+, 0, ·, 1, a,>) without the right zero law. Let L = >0 satisfy (L1). Then v′⊆v.

Proof. We have d(x0)>f L = d(d(x0)>f L)(d(x0)>f L) ≤ d(d(x0)>)L = d(x0)d(>)L = d(x0)L = x0 by
(L1). Let x v′ y, then x ≤ y + x0 ≤ y + L and y ≤ x+ d(x0)>, which implies

y f L ≤ (x+ d(x0)>)f L = (xf L) + (d(x0)>f L) ≤ x+ x0 = x

by (L1). Together y f L ≤ x ≤ y + L, whence x v y by Proposition 20. �

The following application of this result shows how the representations of (pre)fixpoints derived for the
induced order v in the lattice-based setting can be transferred to the Egli-Milner order of the semiring-based
setting. Denote by ξ′f and ξ̂′f the v′-least (pre)fixpoints of the function f .

Corollary 31. Assume the conditions of Theorem 30 and let f : S → S.

1. If f is ≤- and v′-isotone and µf , νf and ξ′f exist, then ξ′f = νf0 + µf = νf f L + µf .
2. If f is v-isotone and µ̂f ≤ ν̂f and ξ̂′f exists, then ξ′f = ξ̂′f = ν̂f f L + µ̂f .

Proof. For the first claim, Lemma 29 yields ξ′f = ξf since v′⊆v by Theorem 30. Hence ξf = νf f L + µf
by Lemma 22. But ξ′f = νf0 + µf by Proposition 2.

For the second claim we get ξ̂f = ν̂f f L + µ̂f by Theorem 23. But ξ̂f = ξf since f is v-isotone, whence
ξ′f = ξ̂′f = ξ̂f by Lemma 29 again using Theorem 30. �

As regards the first claim we remark that while x0 = x f L holds in the model of Section 2, it does
not follow in the assumed structure as a counterexample generated by Mace4 shows. Note also that the
decoupled existence of Lemma 29 spares us the use of Theorem 24 which would require v-isotony, too.

Although v′ and v are closely related, they are not identical: for example, 0 v H holds but 0 v′ H does
not hold. It can be shown that in the setting of Section 4 it is not possible to define the Egli-Milner order
x v′ y by a finite conjunction of inequalities fi(x, y) ≤ gi(x, y) with terms fi(x, y) and gi(x, y) composed
only of the lattice operations + and f and arbitrary constants.
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6. Conclusion

We describe the relation to particular instances of the above structures found in the literature and
translate between the used notations, and finally draw some conclusions. By u the operator of Section 4 is
meant, while v′ again denotes the Egli-Milner order of Section 3.

Our orders ≤, v′ and v correspond to the orders ⊆1, � and ≤ of [13]. That work proposes a semantics for
recursive programs composed of operators which are not necessarily isotone with respect to the Egli-Milner
order. Programs are described as pairs of relations describing state transition and termination information,
see also [35, 30, 34]. To validate the semantics, it is then proved that for Egli-Milner-isotone constructs the
result is in fact the least fixpoint with respect to both v and v′. Our operations u, f, + and t are listed in
this sequence in [13, Section 4.4]. The first two are dismissed, + is the usual non-deterministic choice, and t
is called ‘fair choice’ and further investigated; it motivates the above semantics because t is not v′-isotone.
Our constants 0, L, H, >, 1 and L + 1 are listed in this sequence in [13, Section 4.1] and in [35, Table II].

Our orders ≤, v′ and v correspond to the orders ⊆, vε and vπ of [7]. That work is also motivated by
operations which are not Egli-Milner-isotone, in this case for parallel composition. A technique is devised
to obtain least fixpoints with respect to another order vλ. It is the lexicographic order of the pairs of state
transition and termination information and, being a superset of our v and hence v′, motivates Lemma
29. Least fixpoints with respect to vλ are reduced to ≤-least and ≤-greatest fixpoints as in our work, but
the obtained representation nests these fixpoint operators. The assumptions made for this reduction [7,
Theorem 4] are a complete lattice, ≤-isotony, complemented elements L and H, and condition (8) of Lemma
21. Our operations + and f are considered, but not u and t since the focus is on the order vλ. Our
constants 0, L, H and > are denoted by >, ^, (> and ⊥ in [7].

Our operations +, u, f and t correspond to demonic choice 8, fusion �, join ♦ and concert # of [15],
which discusses their uses. The concert operator in particular also appears in [16, 17].

The first conclusion is that even beyond [23, 24] many properties of general correctness can be derived
from a small basis of first-order axioms. On the other hand, Sections 3.4 and 3.5 provide two examples which
apparently require completeness. We shall therefore inspect this boundary and see whether its interior can
be enlarged by modifying the axiomatisation.

The second conclusion is that we can learn about general correctness by investigating orders related to
the Egli-Milner order. This is in line with the results of [13, 7]. It is also worthwhile to look at the associated
meet and join operations, as shown by the case of the fair choice/concert operator.
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Algebra in Computer Science, volume 5827 of Lecture Notes in Computer Science, pages 150–165. Springer-Verlag, 2009.
[24] W. Guttmann. Partial, total and general correctness. In C. Bolduc, J. Desharnais, and B. Ktari, editors, Mathematics of

Program Construction, volume 6120 of Lecture Notes in Computer Science, pages 157–177. Springer-Verlag, 2010.
[25] W. Guttmann. Unifying recursion in partial, total and general correctness. In S. Qin, editor, Unifying Theories of

Programming, Third International Symposium, UTP 2010, volume 6445 of Lecture Notes in Computer Science, pages
207–225. Springer-Verlag, 2010.

[26] D. Jacobs and D. Gries. General correctness: A unification of partial and total correctness. Acta Informatica, 22(1):67–83,
April 1985.

[27] A. Jung and M. A. Moshier. A Hofmann-Mislove theorem for bitopological spaces. Journal of Logic and Algebraic
Programming, 76(2):161–174, July–August 2008.

[28] O. Klinke. On the 90-degree-lemma. Technical report, University of Birmingham, October 2008. http://epapers.bham.
ac.uk/53/.

[29] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation,
110(2):366–390, May 1994.

[30] R. D. Maddux. Relation-algebraic semantics. Theoretical Computer Science, 160(1–2):1–85, June 1996.
[31] G. Markowsky. Chain-complete posets and directed sets with applications. Algebra Universalis, 6(1):53–68, 1976.
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[34] B. Möller and G. Struth. WP is WLP. In W. MacCaull, M. Winter, and I. Düntsch, editors, Relational Methods in

Computer Science 2005, volume 3929 of Lecture Notes in Computer Science, pages 200–211. Springer-Verlag, 2006.
[35] G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Programming Languages and Systems, 11(4):517–

561, October 1989.
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